4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結(jié)果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔(dān)風(fēng)險的投資者,投資A項目更合適.
對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關(guān)事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測驗中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績是否“兩極分化”則需要考察這個班數(shù)學(xué)成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
一、 問題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問題.例如,就讀不同學(xué)校是否對學(xué)生的成績有影響,不同班級學(xué)生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風(fēng)險,等等,本節(jié)將要學(xué)習(xí)的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學(xué)生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問題.
溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內(nèi)的一切值隨機變量將隨機事件的結(jié)果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.確定研究對象,明確哪個是解釋變量,哪個是響應(yīng)變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).
(2) 請你結(jié)合上述兩幅漫畫,對這一行為進行簡要評析。15.某校七年級組織學(xué)生以“孝親敬長”為主題開展手抄報評比活動。下面是某 同學(xué)手抄報的部分內(nèi)容,請你閱讀并參與完成相關(guān)問題。[我的感受]在人世間,最美的旅行是回家。無論走得多遠,每個游子的心里也都有一個 歸家的夢!回家的感覺真好!(1) 結(jié)合所學(xué)的知識,分析說明“回家真好”的原因是什么?[我的思考]調(diào)查顯示:在當(dāng)今家庭中,許多孩子不要父母過多干涉他們的學(xué)習(xí)和生活, 很多同齡人有被父母偷看過 QQ、微信聊天記錄和日記的經(jīng)歷……(2) 針對調(diào)查顯示的問題,你認為應(yīng)怎樣做才能處理好親子之間的沖突?[我的鑒賞]人生最美好的事,莫過于我長大,你未老。我有能力報答,你仍然健康。父 母之愛,兒女即使用一輩子也是報答不完的。
一、單項選擇題1.C 此題考查生命的特點,AD 選項前面說的都對,但是后面說的都不對。因為: 人生難免風(fēng)險、挫折和坎坷,是逃離不了的,拒絕不了的。生命是獨特的,不能 相互替代,所以 B 也是錯的。C 符合題意正確。 2.①②③都體現(xiàn)對生命的尊重和敬畏,而④表達的是一種消極避世的人生態(tài)度 ; 因此錯了。所以,正確答案 D。3.最美逆行不是沒有安全意識,相反,他們能做到敬畏生命,堅持生命至上。因 此,②選項錯了,其他選項都符合題意。所以正確答案是 D。4. (1) 主題是:敬畏生命(2) 圖 1,祭奠生命,表達對逝者的追悼和懷念。這么做是為了悼念生命,體 現(xiàn)對生命的尊重,體會生命之間是息息相關(guān)的。圖 2,生命是崇高的、神圣的,是任何代價都換取不來的。我們對生命要有一種 敬畏的情懷。
①②③分析題干中,我們生命的意義不在于長短,而在于對社會的貢獻,將個體生 命和國家的甚至人類的命運聯(lián)系在一起時,生命就會閃耀出偉大,活出自己的精彩,讓 生命更加絢爛,故①②③說法符合題意;④“追求生命個性和韌性”說法不符合主題故 ④說法錯誤;2.C【設(shè)計意圖】該題考查呵護食品安全,珍愛生命。 ④說法雖然正確的,但是主體不符,不是市民的做法。故不能入選。 3.A【設(shè)計意圖】本題考查對生命的傳承。①②④材料中的話意在告訴我們,在人類生命的接續(xù)中,我們應(yīng)該為自己的生命找 到一個位置,擔(dān)當(dāng)一份使命;在生命的傳承關(guān)系中,我們應(yīng)該正確認識和面對自己的生 命;我們每個人都不僅僅是在身體上接續(xù)祖先的生命,也在精神上不斷繼承和創(chuàng)造人類 的文明成果,故①②④說法正確;③生命屬于我們每個人,生命的接續(xù)和發(fā)展與我們每 個人息息相關(guān),故③說法錯誤。
B 等級——較積極參與采訪活動;采訪思路較清晰,記錄較完整;能對自己的生 命觀、價值觀有所反思;能主動展示心得體會。C 等級——基本上能參與采訪活動,遇到困難會想放棄;記錄信息較少,只有少 量與主題有關(guān);對自己生命觀、價值觀理解不深;有一點成果反饋,內(nèi)容過于簡 單。總體評價結(jié)果: (四) 作業(yè)分析與設(shè)計意圖這是一項基于素質(zhì)教育導(dǎo)向的整體式課時作業(yè)設(shè)計,以培養(yǎng)學(xué)生核心素養(yǎng)為 目標。作業(yè)以學(xué)生的“生命故事訪談”為主要情境,以填寫活動記錄的形式呈現(xiàn)。 教師從“參與態(tài)度、思想認識”等四個維度對作業(yè)進行評價,以“優(yōu)秀、 良好、 合格”三個等級呈現(xiàn)。本次實踐性作業(yè)是訪談型作業(yè),課前采訪希望通過學(xué)生的 參與,一方面鍛煉學(xué)生的人際交往能力和口頭語言表達能力,另一方面擴展學(xué)生 的生活閱歷,從他人的精彩故事中獲得啟示,激發(fā)學(xué)生對生命的熱情,樹立正確 的人生觀,同時也為下一框題的“平凡與偉大”提供教學(xué)素材,活出自己生命的 精彩。
本單元內(nèi)容是部編版《道德與法治》七年級上冊第三單元,單元標題是“師 長情誼”,依據(jù)《義務(wù)教育道德與法治課程標準 (2022 年版) 》,圍繞核心素 養(yǎng)確定的課程目標要求如下:1、道德修養(yǎng)家庭美德,踐行以尊老愛幼、男女平等、勤勞節(jié)儉、鄰里互助為主要內(nèi)容的 道德要求,做家庭好成員。培育學(xué)生的道德修養(yǎng),有助于他們經(jīng)歷從感性體驗到理性認知的過程,傳承 中華民族傳統(tǒng)美德,形成健全的道德認知和道德情感,發(fā)展良好的道德行為。 2、健全人格理性平和,開放包容,理性表達意見,能夠換位思考,學(xué)會處理與家庭、他 人的關(guān)系。3、總目標學(xué)生能夠了解個人生活和公共生活中基本的道德要求和行為規(guī)范,能夠在日常生 活中踐行尊老愛幼等的道德要求;形成初步的道德認知和判斷,能夠明辨是非善 惡;通過體驗、認知和踐行,形成良好的道德品質(zhì)。具有理性平和的心態(tài),能夠 建立良好的師生關(guān)系和家庭關(guān)系。
作業(yè)二(一)、作業(yè)內(nèi)容情境探究、互聯(lián)網(wǎng)將地球縮成一張小小的“網(wǎng)”。在這張“網(wǎng)”里,我們可 以發(fā)布信息、瀏覽新聞、結(jié)交好友等,為我們的人際交往擴展了新通道。情境一 中學(xué)生小強在一個論壇上認識了小胡,他們在很多問題上看法一致, 很快成為無話不談的好朋友。經(jīng)常徹夜長談興趣愛好、閑聊家庭狀況、相約打游 戲。 有一天,小胡邀請小強一起去參與網(wǎng)絡(luò)賭博,小強猶豫了。(1)請運用《網(wǎng)上交友新時空》的相關(guān)內(nèi)容,結(jié)合材料,談一談:對于這樣的網(wǎng) 友,小強應(yīng)該怎樣做?情境二 小強拒絕小胡以后,開始找借口疏遠小胡。小胡察覺后,開始“變臉” 郵寄各種恐嚇信和物品到小強家。小強忍無可忍選擇了報警。(2)小強的網(wǎng)絡(luò)交往經(jīng)歷,給我們中學(xué)生參與網(wǎng)絡(luò)交往哪些建議?
(四) 作業(yè)分析與設(shè)計意圖這是一項基于素質(zhì)教育導(dǎo)向的整體式課時作業(yè)設(shè)計,以培育學(xué)生課程核心素 養(yǎng)為目標,為了培養(yǎng)學(xué)生的基本道德修養(yǎng)和社會責(zé)任感,養(yǎng)成良好的行為習(xí)慣, 作業(yè)以勞動活動的方式呈現(xiàn),特開展“幫助父母做家務(wù)”社會實踐活動。教師通 過學(xué)生活動成果的展示,從“計劃合理,聯(lián)系實際;操作具體,善于思考;記錄 完整,匯報詳細;總結(jié)全面,反思深刻”等 4個維度對作業(yè)進行評價,以“優(yōu)秀” “良好”“合格”三個等級呈現(xiàn)。通過家務(wù)實踐活動讓學(xué)生體驗到父母工作的辛 苦和勞動的光榮,感謝父母對自己無微不至的關(guān)懷和照顧。讓學(xué)生在接受愛的同 時學(xué)會關(guān)愛,學(xué)會付出、學(xué)會回報,懂得孝親敬長。這種勞動實踐的作業(yè)設(shè)計與 實施,有利于推進中小學(xué)勞動教育,落實勞動教育指導(dǎo)綱要,保障勞動教育時間,創(chuàng)新勞動教育載體,拓展勞動教育實踐場所,推動勞動教育常態(tài)化有效開展,充 分發(fā)揮勞動教育綜合育人作用。增強學(xué)生的責(zé)任意識,在實際生活中能自覺分擔(dān) 家庭責(zé)任,具有較強的責(zé)任感。
第二框“師生交往”,主要幫助學(xué)生懂得“教學(xué)相長”的道理,強調(diào)師生之間上午雙向互動,引導(dǎo)學(xué)生正確對待老師的引領(lǐng)和指導(dǎo),全面認識師生交往的實質(zhì),努力建立和諧的師生關(guān)系,達到師生交往理想而美好的狀態(tài)。第七課《親情之愛》引導(dǎo)學(xué)生認識現(xiàn)代家庭的特點,培養(yǎng)學(xué)生在親子之間積極溝通的能力和意識,學(xué)會表達愛,讓家庭更美好成為一種發(fā)自內(nèi)心的呼喚,與父母共創(chuàng)美好家庭。第一框“家的意味”,主要引導(dǎo)學(xué)生通過對我國傳統(tǒng)文化“家訓(xùn)”“家規(guī)”的探究,了解中國家庭文化中“孝”的精神內(nèi)涵,引導(dǎo)學(xué)生對家庭美德的深入思考,進而引導(dǎo)學(xué)生學(xué)會孝親敬長。第二框“愛在家人間”,主要幫助學(xué)生認識到進入青春期的初中學(xué)生與家人之間產(chǎn)生沖突,既有自我獨立意識增強與依賴心理之間的矛盾的原因,又有代際之間心智、學(xué)識、經(jīng)歷等方面的較大差異,掌握呵護親情和解決沖突的方法。
作業(yè) 2:老師在與我們的交往中,扮演著組織者、傾聽者、陪伴者的角色。作為學(xué)生,我 們要正確對待老師的表揚和批評。下列對此認識正確的是 ( )①老師的表揚意味著肯定、鼓勵和期待②老師的表揚和批評能激勵我們更好地學(xué)習(xí)和發(fā)展③老師的批評意味著關(guān)心、提醒和勸誡,可以幫助我們改進不足④對待老師的批評,我們要理解老師的良苦用心A.①②③ B.①③④ C.②③④ D.①②③④1.參考答案:D2.時間要求:2 分鐘3.評價設(shè)計:本題學(xué)生錯題的原因在于沒有正確理解老師的批評和表揚。 4.作業(yè)分析與設(shè)計意圖:本題考查如何正確看待老師的批評和表揚。(1) 老師的表揚意味著對我們的肯定、鼓勵和期待;批評意味著老師對我們的關(guān)心、 提醒和勸誡,可以幫助我們改進不足,對待老師的批評,我們要理解老師的良苦用心。 (2) 老師的表揚和批評能激勵我們更好地學(xué)習(xí)和發(fā)展,我們要正確地對待老師的表 揚和批評,被老師表揚不驕傲,受到批評也不氣餒和抱怨,正視老師的教育,從而促 進良好師生關(guān)系的發(fā)展。
8.進入青春期后的我們,常常與父母對著干,他們越是讓 我們干什么,我們就越是不干什么,對此我們不合理的做法是 ( )A.創(chuàng)造機會,多與父母交流、溝通B.與父母意見不合時,要注意調(diào)控自己的情緒 C.理解父母的苦心,愛父母,關(guān)心父母D.孝順父母,與父母觀點不同的事情不做9.當(dāng)今社會,很多孩子在家不做家務(wù),說到原因,大部分 家長認為孩子比較小,不適合做家務(wù);還有一部分家長認為孩 子學(xué)習(xí)時間緊張,不做家務(wù)可以節(jié)省時間用來學(xué)習(xí)。下列觀點 與材料內(nèi)容相符的是 ( )A.有利于培養(yǎng)孩子的勞動習(xí)慣B.有利于營造良好的家庭氛圍C.有利于提高孩子的自立能力D.不利于增強孩子的家庭責(zé)任意識10.我國民法典規(guī)定,“缺乏勞動能力或者生活困難的父母,有要求成年子女給付贍養(yǎng)費的權(quán)利” 。這說明了 ( )A.孝親敬長是某些人必須做到的B.孝親敬長是每個中國公民的法定義務(wù)C.孝敬不能只停留在口頭,要落實到行動中D.我們理應(yīng)回報父母
2.內(nèi)容內(nèi)在邏輯本單元包括兩課。 第六課設(shè)計了“走近老師”和“師生交往”兩框內(nèi)容。第一框通過 了解不同時期的老師,讓學(xué)生從多層面、多角度認識老師這一職業(yè)群體;結(jié)合學(xué)生學(xué) 習(xí)實際,發(fā)現(xiàn)風(fēng)格不同的老師,進一步引導(dǎo)學(xué)生學(xué)會接納、尊重不同風(fēng)格的老師,繼 而建立對老師應(yīng)有的正確“印象”;構(gòu)建與老師良好交往的邏輯起點。第二框通過幫 助學(xué)生正確對待老師的引領(lǐng)與指導(dǎo)、表揚與批評以及與老師的矛盾與沖突,使學(xué)生認 識到亦師亦友的師生關(guān)系是師生交往的理想狀態(tài);并以實際行動與老師共建良好師生 關(guān)系,共度教育好時光。第七課設(shè)計了“家的意味” 、“愛在家人間”和“讓家更美好”三框內(nèi)容。第一框通過 引導(dǎo)學(xué)生聯(lián)系已有的生活經(jīng)驗認識“家”是什么,結(jié)合對“家”及有關(guān)優(yōu)秀的傳統(tǒng)文化 進行探討與分享,認識中國人的“家”是怎樣的;在對“家”基本認知的前提下,第二 框進一步引導(dǎo)學(xué)生理解家的最本質(zhì)內(nèi)涵是“愛” ,并以實際行動去呵護“愛”;在對 “家”和“愛”的認知基礎(chǔ)上,第三框進一步引導(dǎo)學(xué)生學(xué)會與家庭成員友好相處,從 而構(gòu)建和諧的家庭關(guān)系,讓家更美好。