2.辯證的否定(1)辯證的否定是事物的自我否定。事物內(nèi)部存在著肯定方面和否定方面,它們既對立又統(tǒng)一。最初,肯定方面處于支配地位,否定方面處于被支配地位。在這種情況下,事物就被肯定著。但是,在矛盾雙方的斗爭中,否定方面總會由弱變強。一旦否定方面由被支配地位上升為支配地位,事物就轉(zhuǎn)化到了自己的對立面,實現(xiàn)了對事物的否定。事物最終之所以被否定,根源在于事物的內(nèi)部,是事物內(nèi)部的否定因素戰(zhàn)勝了肯定因素。因此,事物的否定是自我否定。(2)辯證的否定是事物發(fā)展的環(huán)節(jié)和聯(lián)系的環(huán)節(jié)。所謂發(fā)展,是指新事物的產(chǎn)生和舊事物的滅亡。而實現(xiàn)這一過程必須要對舊事物進行否定,否定實現(xiàn)了事物由舊質(zhì)向新質(zhì)的飛躍。新事物在否定舊事物時,并不是把舊事物全盤拋棄,一筆勾銷。舊事物是新事物的母體,新事物從舊事物那里脫胎而來,新事物是在批判地繼承舊事物中的一切積極的有生命力的因素的基礎(chǔ)上發(fā)展起來的。這樣,在新舊事物之間就存在著必然的聯(lián)系。
(2)歷史課本中歷朝歷代的文化發(fā)展。(3)政治生活中關(guān)于綜合國力競爭的相關(guān)知識。(4)了解文化產(chǎn)業(yè)的發(fā)展,深入體會知識經(jīng)濟、文化經(jīng)濟現(xiàn)象。五、【方法點津】:(1)堅持理論聯(lián)系實際的方法,感悟文化現(xiàn)象,理解文化內(nèi)涵,分析文化的作用,增強文化學(xué)習(xí)的自覺性。(2)自學(xué)探究。以課本的簡單提示為線索,深入探究文化與經(jīng)濟、政治的相互交融,探究文化在綜合國力競爭中的地位和作用。(3)集體討論。針對當(dāng)前國際競爭的實質(zhì),探討我國應(yīng)如何發(fā)展文化產(chǎn)業(yè)、發(fā)展文化生產(chǎn)力、增強文化競爭力;討淪為更好地應(yīng)對文化競爭,作為中學(xué)生目前應(yīng)做好哪些準(zhǔn)備。六、【課文導(dǎo)語】:文化,一個我們十分熟悉的詞匯。然而“熟知并非真知”。有人說,文化是知識;有人說,文化是藝術(shù)。究竟什么是“文化”?只要在社會生活中細細體味,我們就能真切地感悟“文化”的內(nèi)涵與文化的力量。
[補充]:鄭州是特大城市,我們對燈火通明的夜晚都有深刻的體會,我們都體會過光給他們帶來的好處,而對過多過亮的光帶來的危害則很少認真地思考過,且光污染給都市人們和其他生物和環(huán)境帶來的不利影響也越來越大,所以,我在這兒給同學(xué)們補充光污染,目的是提醒他們要增強環(huán)保意識,要理解城市在建設(shè)過程中要減少城市各類活動對環(huán)境的污染;另外,隨著城市的不斷發(fā)展,還可能會產(chǎn)生新 的污染物。還培養(yǎng)了學(xué)生用發(fā)展的眼光來看世界。[思考]:如何降低城市化對地理環(huán)境產(chǎn)生的影響?[答]:發(fā)展生態(tài)城市,使人工環(huán)境和自然環(huán)境和諧統(tǒng)一起來。一方面在城市建設(shè)中,要發(fā)展低污染的節(jié)能建筑和綠色交通,減少城市各類活動對環(huán)境的污染;另一方面使城市景觀盡可能地與山、河、湖、海、植被等自然景觀保持協(xié)調(diào),建立一種良性循環(huán)。
3.社會實踐對文化創(chuàng)新的決定作用社會實踐對文化創(chuàng)新具有兩個方面的重要作用:(1)社會實踐是文化創(chuàng)新的源泉實踐,作為人們改造客觀世界的活動,是一種有目的、有意識的社會性活動。人類在改造自然和社會的實踐中,創(chuàng)造出自己特有的文化。離開了社會實踐;文化就會成為無源之水、無本之木,人們不可能從事任何有價值的文化創(chuàng)造?!蟊菊n小結(jié):1.關(guān)于本課邏輯結(jié)構(gòu)的宏觀把握:文化創(chuàng)新的源泉和作用這一問題,教材分三個層次展開論證:一是不盡的源泉,不竭的動力;二是巨大的作用,深刻的意義;三是呼喚文化創(chuàng)新的時代。教材運用辯證方法從文化創(chuàng)新的源泉和作用展開論述。即社會實踐是文化創(chuàng)新的源泉,文化創(chuàng)新又推動社會實踐的發(fā)展和促進民族文化的繁榮。教材關(guān)于文化創(chuàng)新的途徑問題,從三個層次展開講述:第一個層次是“繼承傳統(tǒng),推陳出新”;第二個層次是“面向世界,博采眾長”;第三個層次是“堅持正確方向,克服錯誤傾向”。
在數(shù)學(xué)上,0這個數(shù)是解決記數(shù)和進位問題而引進的概念,由于它不能表示實在的東西,很長時間人們不把它看作是一個數(shù)。認為0是無,是對有的否定。從唯物辯證法的觀點看,這種否定不是形而上學(xué)的簡單否定,而是具有豐富內(nèi)容的辨證否定。辨證的否定是發(fā)展的環(huán)節(jié)。0是從無到有的必經(jīng)之路,是連接無和有的橋梁。0又是正數(shù)和負數(shù)之間的界限,它既否定了任何正數(shù),也否定了任何負數(shù),是唯一的中性數(shù)。但它又是聯(lián)結(jié)正數(shù)和負數(shù)的中間環(huán)節(jié)。沒有0,負數(shù)就過渡不到正數(shù)去,正數(shù)也休想發(fā)展到負數(shù)來。數(shù)學(xué)中的0是對任何定量的否定。如果沒有這一否定,任何量的發(fā)展都無從談起。這個否定不是一筆勾銷,而是揚棄。因為它克服了任何定量的有限性,成為其發(fā)展的環(huán)節(jié)。在現(xiàn)實生活中,0作為辨證的否定,也體現(xiàn)出聯(lián)系和發(fā)展的性質(zhì)。如0度不是沒有溫度,而是非常確定的溫度。
1、知識與技能 (1)認識勻速圓周運動的概念,理解線速度的概念,知道它就是物體做勻速圓周運動的瞬時速度;理解角速度和周期的概念,會用它們的公式進行計算; (2)理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T; (3)理解勻速圓周運動是變速運動。 2、過程與方法 (1)運用極限法理解線速度的瞬時性.掌握運用圓周運動的特點如何去分析有關(guān)問題; (2)體會有了線速度后.為什么還要引入角速度.運用數(shù)學(xué)知識推導(dǎo)角速度的單位。
(2) 中國文人的悲秋情結(jié)。3.《荷塘月色》中,作者為什么要離開家來到荷塘散步?4. 思考:作者的心里為何“頗不寧靜?”(教師補充:寫作背景)5. 出門散步后,作者的心情發(fā)生變化了嗎? 有怎樣的變化?6.思考討論:為什么作者說“我”與“地壇”間有著宿命般的緣分,二者有何相似之處?(閱讀1-5段)7.思考:作者從他同病相憐的“朋友“身上理解了怎樣的”意圖“?三、課堂總結(jié)李白說:“天地者,萬物之逆旅也?!比松?,如同一場旅行,在人生的旅途中,時而高山,時而峽谷,時而坦途,時而歧路。我們或放歌,或悲哭,然而,大自然始終以其不變的姿勢深情地看著我們,而我們,也應(yīng)該學(xué)會在與自然的深情對望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁達夫,荷塘月色之于朱自清,地壇之于史鐵生,他們從中或得到心靈的慰藉、精神的寄托,或得到生存的智慧與勇氣,最終完成精神的超脫。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學(xué)運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學(xué)建模:運用函數(shù)的觀點方程的根;
觀察實驗視頻實驗驗證師:其實大家完全可以利用身邊的器材來驗證。實驗1、用彈簧秤掛上鉤碼,然后迅速上提和迅速下放?,F(xiàn)象:在鉤碼被迅速上提的一瞬間,彈簧秤讀數(shù)突然變大;在鉤碼被迅速下放的一瞬間,彈簧秤讀數(shù)突然變小。師:迅速上提時彈簧秤示數(shù)變大是超重還是失重?迅速下放時彈簧秤示數(shù)變小是超重還是失重?生:迅速上提超重,迅速下放失重。體會為何用彈簧秤測物體重力時要保證在豎直方向且保持靜止或勻速實驗2、學(xué)生站在醫(yī)用體重計上,觀察下蹲和站起時秤的示數(shù)如何變化?在實驗前先讓同學(xué)們理論思考示數(shù)會如何變化再去驗證,最后再思考。(1)在上升過程中可分為兩個階段:加速上升、減速上升;下蹲過程中也可分為兩個階段:加速下降、減速下降。(2)當(dāng)學(xué)生加速上升和減速下降時會出現(xiàn)超重現(xiàn)象;當(dāng)學(xué)生加速下降和減速上升時會出現(xiàn)失重現(xiàn)象;(3)出現(xiàn)超重現(xiàn)象時加速度方向向上,出現(xiàn)失重現(xiàn)象時加速度方向向下。完全失重
(四)實例探究☆力和運動的關(guān)系1、一個物體放在光滑水平面上,初速為零,先對物體施加一向東的恒力F,歷時1秒,隨即把此力改變?yōu)橄蛭?,大小不變,歷時1秒鐘,接著又把此力改為向東,大小不變,歷時1秒鐘,如此反復(fù)只改變力的方向,共歷時1分鐘,在此1分鐘內(nèi)A.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置之東B.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置C.物體時而向東運動,時而向西運動,在1分鐘末繼續(xù)向東運動D.物體一直向東運動,從不向西運動,在1分鐘末靜止于初始位置之東☆牛頓運動定律的應(yīng)用2、用30N的水平外力F,拉一靜止放在光滑的水平面上質(zhì)量為20kg的物體,力F作用3秒后消失,則第5秒末物體的速度和加速度分別是A.v=7.5m/s,a=l.5m/s2B.v=4.5m/s,a=l.5m/s2C.v=4.5m/s,a=0D.v=7.5m/s,a=0
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學(xué)們思考回答點P關(guān)于原點、x軸、y軸對稱的三個點的坐標(biāo)是什么?【答案】點P(x, y)關(guān)于原點對稱點P1(-x, -y)點P(x, y)關(guān)于x軸對稱點P2(x, -y) 點P(x, y)關(guān)于y軸對稱點P3(-x, y)
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關(guān)系,體會直觀圖示對理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點關(guān)注端點是否含“=”及 問題;5.數(shù)學(xué)建模:用集合思想對實際生活中的對象進行判斷與歸類。
本節(jié)內(nèi)容是學(xué)生學(xué)習(xí)了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學(xué)習(xí)內(nèi)容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個三角函數(shù)知識的基礎(chǔ),在教材中起承上啟下的作用。同時,它體現(xiàn)的數(shù)學(xué)思想與方法在整個中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。課程目標(biāo)1.理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用.2.會利用同角三角函數(shù)的基本關(guān)系式進行化簡、求值與恒等式證明.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解同角三角函數(shù)基本關(guān)系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關(guān)系;3.數(shù)學(xué)運算:利用同角三角函數(shù)的基本關(guān)系式進行化簡、求值與恒等式證明重點:理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用; 難點:會利用同角三角函數(shù)的基本關(guān)系式進行化簡、求值與恒等式證明.
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質(zhì),完成函數(shù)增長快慢的認識。既是對三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;3、在認識函數(shù)增長差異的過程中,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長快慢的認識;b.邏輯推理:由特殊到一般的推理;
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學(xué)習(xí)中讓學(xué)生體會在類比推理,感受圖像的變化,認識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對數(shù)函數(shù)過程中,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時,本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡單應(yīng)用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標(biāo) 學(xué)科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運算:運用函數(shù)模型解決實際問題;