提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版高中政治必修3文化在交流中傳播精品教案

  • 《過秦論》說課稿  2021—2022學(xué)年統(tǒng)編版高中語文選擇性必修中冊(cè)

    《過秦論》說課稿 2021—2022學(xué)年統(tǒng)編版高中語文選擇性必修中冊(cè)

    三、教學(xué)方法為了突出重點(diǎn),突破難點(diǎn),完成教學(xué)目標(biāo),選擇行之有效的教學(xué)方法是非常關(guān)鍵的。根據(jù)課程標(biāo)準(zhǔn)的要求和本節(jié)課的特點(diǎn),為了關(guān)注學(xué)生的個(gè)體差異和不同的學(xué)習(xí)需求,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,培養(yǎng)學(xué)生閱讀和分析文章的能力,我主要采用以下的教學(xué)方法:1、懸念導(dǎo)入法。用懸念導(dǎo)入能激發(fā)起學(xué)生對(duì)文言文閱讀的興趣,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性。2、根據(jù)教師主導(dǎo)作用與學(xué)生主動(dòng)性相結(jié)合的原則,選擇了以語言傳遞信息為主的方法,講授法。四、學(xué)法通過初中的學(xué)習(xí),學(xué)生對(duì)古文知識(shí)已經(jīng)有了一定的掌握,但是對(duì)這種古代散文比較少見,特別是敘史和議論結(jié)合的寫法更是陌生。所以學(xué)習(xí)這篇課文的時(shí)候,通過反復(fù)地誦讀,分析句型,對(duì)比句型的意思,達(dá)到疏通文意,這樣,學(xué)生通過朗讀理解法、質(zhì)疑提問法、自主討論探究法能復(fù)述課文,了解文章層次,理解文章主旨含義。

  • 《鄉(xiāng)土中國(guó)》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《鄉(xiāng)土中國(guó)》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    活動(dòng)一:整體感知,梳理要點(diǎn)新修訂《課程標(biāo)準(zhǔn)》指出:重視學(xué)生的思維發(fā)展與提升,如直覺思維、形象思維、抽象思維等。為此,我設(shè)計(jì)了“梳理要點(diǎn)、繪制思維導(dǎo)圖”兩個(gè)部分,引導(dǎo)學(xué)生在閱讀中整體感知文本。1、梳理章節(jié)要點(diǎn),明確內(nèi)容要素《家族》:以西洋家庭特點(diǎn)為對(duì)照,分析中國(guó)鄉(xiāng)土社會(huì)家庭的特點(diǎn)?!赌信袆e》:主要討論鄉(xiāng)土社會(huì)感情定向的問題,偏向同性交往,遏制男女交往。2、展示思維導(dǎo)圖,凸顯整體關(guān)聯(lián)引導(dǎo)同學(xué)制作多種思維導(dǎo)圖:流程圖式、樹狀圖式、爪形圖式活動(dòng)二:走進(jìn)文本,深化認(rèn)知新修訂《課程標(biāo)準(zhǔn)》指出:學(xué)會(huì)語文運(yùn)用的方法,有效地提高語文能力,并在學(xué)習(xí)語言文字運(yùn)用的過程中促進(jìn)方法、習(xí)慣及情感、態(tài)度與價(jià)值觀的綜合發(fā)展。所以在教學(xué)中我引導(dǎo)學(xué)生掌握整本書閱讀的基本方法,即以速讀、跳讀的方式地毯式地搜索書中關(guān)于“中西家庭差別”的內(nèi)容,得出鄉(xiāng)土家族的六個(gè)方面的特點(diǎn),學(xué)生分別結(jié)合生活中的現(xiàn)象闡述了這六個(gè)方面的特點(diǎn)在生活中的具體體現(xiàn)。

  • 《中國(guó)建筑的特征》說課稿  2021—2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    《中國(guó)建筑的特征》說課稿 2021—2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    (二)初讀課文,整體感知首先教師對(duì)作者進(jìn)行簡(jiǎn)單介紹,再要求學(xué)生速讀課文,讓學(xué)生初步感知課文內(nèi)容,歸納全文思路,邊讀邊思考PPT上的問題。問題:全文可以分成幾部分?此環(huán)節(jié)意在激發(fā)學(xué)生的學(xué)習(xí)主動(dòng)性,培養(yǎng)學(xué)生的自學(xué)能力。讀畢,我會(huì)對(duì)學(xué)生的自學(xué)情況進(jìn)行檢查反饋,鼓勵(lì)學(xué)生踴躍發(fā)言,說出自己理解的寫作思路,最后教師對(duì)學(xué)生的答案進(jìn)行概括和總結(jié),此環(huán)節(jié)能夠讓學(xué)生對(duì)中國(guó)建筑的特征整體把握,夯實(shí)學(xué)習(xí)本文的基礎(chǔ),同時(shí)感知課文,理清文章脈絡(luò),實(shí)現(xiàn)長(zhǎng)文短教,為析讀本文作好鋪墊。(三)析讀課文,質(zhì)疑問難此環(huán)節(jié)是教學(xué)的重要階段,在這里,我會(huì)以新課標(biāo)為基準(zhǔn),做到閱讀指向每一個(gè)學(xué)生的個(gè)體閱讀,同時(shí)在教學(xué)過程中遵循啟發(fā)性,循序漸進(jìn)性的原則。此環(huán)節(jié)運(yùn)用小組合作學(xué)習(xí)法、討論法和問答法分析中國(guó)建筑的特征。同學(xué)每四人為一小組討論P(yáng)PT上展示的問題。

  • 《以工匠精神雕琢?xí)r代品質(zhì)》說課稿 2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《以工匠精神雕琢?xí)r代品質(zhì)》說課稿 2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    答案:銅車馬的輝煌,來自原料的精挑細(xì)選、工藝的精巧極致和工匠的精心雕琢??梢哉f,是精益求精的工匠精神鍛造出了“青銅之冠”的銅車馬。2.“工匠精神”如此重要,那么,你認(rèn)為“工匠精神”有著怎樣的現(xiàn)實(shí)意義?觀點(diǎn)一:工匠精神在企業(yè)層面,可以認(rèn)為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個(gè)方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導(dǎo)者精神的動(dòng)力。第三,執(zhí)著是企業(yè)走得長(zhǎng)久的底氣。改革開放40 多年來,我國(guó)涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟(jì)效益。這正是經(jīng)濟(jì)發(fā)展的隱憂所在。觀點(diǎn)二:工匠精神在員工層面,就是一-種認(rèn)真精神、敬業(yè)精神。其核心是: 不僅僅把工作當(dāng)作賺錢養(yǎng)家糊口的工具,而是樹立起對(duì)職業(yè)敬畏、對(duì)工作執(zhí)著、對(duì)產(chǎn)品負(fù)責(zé)的態(tài)度,極度注重細(xì)節(jié),不斷追求完美和極致,給客戶無可挑剔的體驗(yàn)。我國(guó)制造業(yè)存在大而不強(qiáng)、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。

  • 空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)我國(guó)著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    ∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)(3,√10);(3)a=b,經(jīng)過點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

  • 拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再?gòu)漠嫹ㄖ刑釤挸鰭佄锞€的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 《登高》說課稿(三)2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《登高》說課稿(三)2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    ④結(jié)合杜甫的身世遭遇,你認(rèn)為這里的“艱難苦恨”包含著哪些情感?第五步是拓展延伸對(duì)比閱讀李白的《夢(mèng)游天姥吟留別》,討論詩(shī)體形式與詩(shī)人情感抒發(fā)之間的關(guān)系。第六步是達(dá)標(biāo)檢測(cè)我將緊扣考試題型,以理解性默寫的形式,當(dāng)堂檢驗(yàn)學(xué)生對(duì)詩(shī)歌的掌握情況第三環(huán):課后跟蹤課后作業(yè):①背誦并默寫詩(shī)歌②鑒賞詩(shī)歌《秋興八首》 (其一) ,找出詩(shī)歌所用意象,體會(huì)意境,表達(dá)情感。玉露凋傷楓樹林,巫山巫峽氣蕭森。江間波浪兼天涌,塞上風(fēng)云接地陰。叢菊兩開他日淚,孤舟一系故園心。寒衣處處催刀尺,搗衣砧上拂還來。最后,我來說一說我的板書設(shè)計(jì),我的板書設(shè)計(jì)簡(jiǎn)潔明了,清晰直觀,能夠突出本課的重點(diǎn)和難點(diǎn)。以上就是我本說課的全部?jī)?nèi)容,再次感謝各位考官的聆聽!

  • 《歸園田居(其一)》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《歸園田居(其一)》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    運(yùn)用比較法,讓學(xué)生討論比較字詞改換后與原詩(shī)在表達(dá)效果上有何異同,然后教師和同學(xué)們共同總結(jié)出原詩(shī)中的畫線字詞主要運(yùn)用了比喻和擬人等修辭手法,顯得既生動(dòng)又含蓄,富有意境美,而改后的字詞顯得直白而又重復(fù)。通過文本研讀部分的學(xué)習(xí),學(xué)生對(duì)詩(shī)歌內(nèi)容有了較深入的理解,為了使學(xué)生拓寬知識(shí)面,加強(qiáng)思想價(jià)值觀的教育引導(dǎo),在拓展練習(xí)部分我設(shè)置了一個(gè)探究性的問題,讓學(xué)生談?wù)勅绾慰创諟Y明歸隱的問題,我采用合作探究法,讓學(xué)生分組互動(dòng)討論、自由發(fā)言。教師針對(duì)學(xué)生的發(fā)言,及時(shí)地加以點(diǎn)撥:陶淵明不與統(tǒng)治者合作,令人敬佩;歌唱田園風(fēng)光,令人贊嘆;歸隱田園有獨(dú)善其身,消極避世因素,這一點(diǎn)自然不應(yīng)當(dāng)苛求古人。

  • 《百合花》《哦,香雪》說課稿 2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《百合花》《哦,香雪》說課稿 2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    1、導(dǎo)入:青春之美,彌足珍貴,青春的價(jià)值又各不相同,如果革命之志是毛澤東青春的美好,那蓬勃的創(chuàng)造力就是郭沫若的青春之歌,如果奉獻(xiàn)與犧牲是聞一多青春的價(jià)值,那么自由就是雪萊青春的底色,我們前兩節(jié)課遨游在詩(shī)歌的天空,那么我們這節(jié)課我們要來到小說的園地,看看青春在這片小說的沃土里展現(xiàn)怎樣的顏色。目的:創(chuàng)設(shè)詩(shī)意,進(jìn)入情境,延繼單元主題,引出學(xué)習(xí)內(nèi)容2、學(xué)習(xí)任務(wù)一:預(yù)習(xí)檢查,概括情節(jié)目的:檢查預(yù)習(xí)成果,落實(shí)整體感知把握主旨的課前學(xué)習(xí)任務(wù)。3、學(xué)習(xí)任務(wù)二:情境探究:品人物悟青春之美假設(shè)我校文學(xué)社正在舉辦“文學(xué)中最美的青春人物”評(píng)選活動(dòng),讓同學(xué)在《百合花》與《哦,香雪》中推選出最能體現(xiàn)青春美好的人物,還需要附上簡(jiǎn)短的推薦理由以便評(píng)委組評(píng)議。誰最美?大家為此爭(zhēng)論不休,如果你也參與推薦,那你覺得誰才是最美的青春人物?你會(huì)為他寫上怎樣的推薦理由?(思考提示:依據(jù)表格內(nèi)容思考并完成表格,小組內(nèi)交流3分鐘,推選代表回答)

  • 《百合花》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《百合花》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    1. 厘清全文的線索、情節(jié),體會(huì)小說結(jié)構(gòu)嚴(yán)謹(jǐn)、清新俊逸的寫作風(fēng)格。2. 分析通訊員、新媳婦的人物形象,通過品味生動(dòng)的細(xì)節(jié)來感知人物身上洋溢的人性美、青春美。3.通過自主、合作、探究,從不同角度和層面發(fā)掘“百合花”這一主題的獨(dú)特意蘊(yùn)。4.通過把握小說人性美、青春美的主題,引導(dǎo)學(xué)生提升自身的精神品質(zhì)和道德情操。教學(xué)重點(diǎn)是:通訊員及新媳婦的性格特征分析,小說如何通過細(xì)節(jié)描寫來塑造人物性格。教學(xué)難點(diǎn)是:從不同角度和層面發(fā)掘“百合花”這一主題的獨(dú)特意蘊(yùn)?!窘虒W(xué)方法】本文篇幅較長(zhǎng),但我們決定用一個(gè)課時(shí)來完成教學(xué)任務(wù),課前讓學(xué)生充分預(yù)習(xí)文本,自己搜集有關(guān)“百合花”的知識(shí)資料,自主梳理文章的故事情節(jié),自主歸納人物的形象、性格特點(diǎn)。課堂上采用情景激趣法、啟發(fā)誘導(dǎo)法、合作探究法等教學(xué)方法來引導(dǎo)學(xué)生學(xué)習(xí)探究,培養(yǎng)學(xué)生的文學(xué)鑒賞能力。

上一頁(yè)123...515253545556575859606162下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!