情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、設(shè)計思想通過本節(jié)教學(xué),不但要使學(xué)生認識掌握勻變速直線運動的規(guī)律,而且要通過對這問題的研究,使學(xué)生了解和體會物理學(xué)研究問題的一個方法,圖象、公式、以及處理實驗數(shù)據(jù)的方法等。這一點可能對學(xué)生更為重要,要通過學(xué)習(xí)過程使學(xué)生有所體會。本節(jié)在內(nèi)容的安排順序上,既注意了科學(xué)系統(tǒng),又注意學(xué)生的認識規(guī)律。講解問題從實際出發(fā),盡量用上一節(jié)的實驗測量數(shù)據(jù)。運用圖象這種數(shù)學(xué)工具,相對強調(diào)了圖象的作用和要求。這是與以前教材不同的。在現(xiàn)代生產(chǎn)、生活中,圖象的運用隨處可見,無論學(xué)生將來從事何種工作,掌握最基本的應(yīng)用圖象的知識,都是必須的。學(xué)生在初學(xué)時往往將數(shù)學(xué)和物理分割開來,不習(xí)慣或不會將已學(xué)過的數(shù)學(xué)工具用于物理當(dāng)中。在教學(xué)中應(yīng)多在這方面引導(dǎo)學(xué)生。本節(jié)就是一個較好的機會,將圖象及其物理意義聯(lián)系起來。
一、教學(xué)目標1.知識與技能:(1)知道勻速直線運動的位移x=υt對應(yīng)著 圖象中的矩形面積.(2)掌握勻變速直線運動的位移與時間關(guān)系的公式 ,及其簡單應(yīng)用.(3)掌握勻變速直線運動的位移與速度關(guān)系的公式 ,及其簡單應(yīng)用.2.過程與方法:(1)讓學(xué)生初步了解探究學(xué)習(xí)的方法.(2)培養(yǎng)學(xué)生運用數(shù)學(xué)知識-----函數(shù)圖象的能力.(3)培養(yǎng)學(xué)生運用已知結(jié)論正確類比推理的能力.3.情感態(tài)度與價值觀:(1)培養(yǎng)學(xué)生認真嚴謹?shù)目茖W(xué)分析問題的品質(zhì).(2)從知識是相互關(guān)聯(lián)、相互補充的思想中,培養(yǎng)學(xué)生建立事物是相互聯(lián)系的唯物主義觀點.(3)培養(yǎng)學(xué)生應(yīng)用物理知識解決實際問題的能力.二、教學(xué)重點、難點1.教學(xué)重點及其教學(xué)策略:重點:(1)勻變速直線運動的位移與時間關(guān)系的公式 及其應(yīng)用.(2)勻變速直線運動的位移與速度關(guān)系的公式 及其應(yīng)用.教學(xué)策略:通過思考討論和實例分析來加深理解.
一、教學(xué)目標1.知識與技能:(1)知道勻速直線運動的位移x=υt對應(yīng)著 圖象中的矩形面積.(2)掌握勻變速直線運動的位移與時間關(guān)系的公式 ,及其簡單應(yīng)用.(3)掌握勻變速直線運動的位移與速度關(guān)系的公式 ,及其簡單應(yīng)用.2.過程與方法:(1)讓學(xué)生初步了解探究學(xué)習(xí)的方法.(2)培養(yǎng)學(xué)生運用數(shù)學(xué)知識-----函數(shù)圖象的能力.(3)培養(yǎng)學(xué)生運用已知結(jié)論正確類比推理的能力.3.情感態(tài)度與價值觀:(1)培養(yǎng)學(xué)生認真嚴謹?shù)目茖W(xué)分析問題的品質(zhì).(2)從知識是相互關(guān)聯(lián)、相互補充的思想中,培養(yǎng)學(xué)生建立事物是相互聯(lián)系的唯物主義觀點.(3)培養(yǎng)學(xué)生應(yīng)用物理知識解決實際問題的能力.二、教學(xué)重點、難點1.教學(xué)重點及其教學(xué)策略:重點:(1)勻變速直線運動的位移與時間關(guān)系的公式 及其應(yīng)用.(2)勻變速直線運動的位移與速度關(guān)系的公式 及其應(yīng)用.教學(xué)策略:通過思考討論和實例分析來加深理解.
一、設(shè)計思想通過本節(jié)教學(xué),不但要使學(xué)生認識掌握勻變速直線運動的規(guī)律,而且要通過對這問題的研究,使學(xué)生了解和體會物理學(xué)研究問題的一個方法,圖象、公式、以及處理實驗數(shù)據(jù)的方法等。這一點可能對學(xué)生更為重要,要通過學(xué)習(xí)過程使學(xué)生有所體會。本節(jié)在內(nèi)容的安排順序上,既注意了科學(xué)系統(tǒng),又注意學(xué)生的認識規(guī)律。講解問題從實際出發(fā),盡量用上一節(jié)的實驗測量數(shù)據(jù)。運用圖象這種數(shù)學(xué)工具,相對強調(diào)了圖象的作用和要求。這是與以前教材不同的。在現(xiàn)代生產(chǎn)、生活中,圖象的運用隨處可見,無論學(xué)生將來從事何種工作,掌握最基本的應(yīng)用圖象的知識,都是必須的。學(xué)生在初學(xué)時往往將數(shù)學(xué)和物理分割開來,不習(xí)慣或不會將已學(xué)過的數(shù)學(xué)工具用于物理當(dāng)中。在教學(xué)中應(yīng)多在這方面引導(dǎo)學(xué)生。本節(jié)就是一個較好的機會,將圖象及其物理意義聯(lián)系起來。
1.從監(jiān)測的范圍、速度,人力和財力的投入等方面看,遙感具有哪些特點?點撥:范圍更廣、速度更快、需要人力更少 、財力投入少。2.有人說:遙感是人的視力的延伸。你同意這種看法嗎?點撥:同意??梢詮倪b感的定義分析。從某種意義上說,人們“看”的過程就是在遙感,眼睛相當(dāng)于傳感器。課堂小結(jié):遙感技術(shù)是國土整治和區(qū)域發(fā)展研究中應(yīng)用較廣的技術(shù) 手段之一,我國在這個領(lǐng)域已經(jīng)走在了世界的前列。我國的大部分土地已經(jīng)獲得了大比例尺的航空影像資料,成功發(fā)射了回收式國土資源衛(wèi)星,自行研制發(fā)射了“風(fēng)云”衛(wèi)星。遙感技術(shù)為我國自然資源開發(fā)與利用提供 了大量的有用的資料,在我國農(nóng)業(yè)估產(chǎn)、災(zāi)害監(jiān)測 、礦產(chǎn)勘察、土地利用、環(huán)境管理與城鄉(xiāng)規(guī)劃中起到了非常重要的作用。板書設(shè)計§1.2地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
(一)說教材 《虞美人》選自高中語文統(tǒng)編版必修上冊·古詩詞誦讀?!队菝廊恕肥窃~中的代表作品,是李煜生命中最為重要的一首詞作,極具藝術(shù)魅力,對于陶冶學(xué)生的情操,豐富和積淀學(xué)生的人文素養(yǎng)意義非凡。(二)說學(xué)情總體來說,所教班級的學(xué)生基礎(chǔ)不強,學(xué)習(xí)意識略有偏差,在學(xué)習(xí)過程中需要教師深入淺出,不斷創(chuàng)造動口、動手、動腦的機會,他們才能更好地達成教學(xué)目標。(三)說教學(xué)目標根據(jù)教學(xué)內(nèi)容和學(xué)情分析,確定如下教學(xué)目標(1)探究這首詞的內(nèi)涵,了解李煜及其創(chuàng)作風(fēng)格。(2)通過對本詞的品析,提高詞的鑒賞能力。(3)通過對比閱讀,體會李煜詞 “赤子之心” 、“以血書者”的特色,體味其深沉的亡國之恨和故國之思。
環(huán)境問題 是伴著人口問題、資源問題和發(fā)展問題產(chǎn)生。本質(zhì)是發(fā)展問題 ,可持續(xù)發(fā)展。6分析可持續(xù)發(fā)展的概念、內(nèi)涵和 原則?可持續(xù)發(fā)展的含義:可持續(xù)發(fā)展是這樣的發(fā)展,它既滿足當(dāng)代人的需求,而又不損害后代人滿足其需求的能力??沙掷m(xù)發(fā)展的內(nèi)涵:生態(tài)持續(xù)發(fā)展 ,發(fā)展的基礎(chǔ);經(jīng)濟持續(xù)發(fā)展,發(fā)展條件;社會持續(xù)發(fā)展,發(fā)展目的??沙掷m(xù)發(fā)展的原則:公平性原則——代內(nèi)、代際、人與物、國家與地區(qū)之間;持續(xù)性原則——經(jīng)濟活動保持在資源環(huán)境承載力之內(nèi);共同性原則— —地球是一個整體?!究偨Y(jié)新課】可持續(xù)發(fā) 展的含義:可持續(xù)發(fā)展是這樣的發(fā)展,它既滿足當(dāng)代人的需求,而又不損害后代人滿足其需求的能力??沙掷m(xù)發(fā)展的內(nèi)涵:生態(tài)持續(xù)發(fā)展,發(fā)展的基礎(chǔ);經(jīng)濟持續(xù)發(fā)展,發(fā)展條件;社會持續(xù)發(fā)展,發(fā)展目的。
一、活動內(nèi)容分析西歐從5世紀末至9世紀歷經(jīng)四個世紀完成了由奴隸制度向封建制度的轉(zhuǎn)變,西歐中世紀即西歐的封建社會,形成了與中國封建社會不同的特點。理解這些特點,將有助于學(xué)生理解西歐在世界上最早進入資本主義社會的原因。盡管神學(xué)世界觀籠罩了西方中世紀,是黑暗的,但是應(yīng)看到,自古代流傳下來的政治思想傳統(tǒng)如平等、自由、民主、法制等思想史都以不同的形式保存下來。歐洲的中世紀表面上看起來是一個陰森森的一千年(五百年到一千五百年),但實際上確實孕育了西方近代文明的重要時期。從探究活動的內(nèi)容上看與第二單元的古代希臘羅馬的政治制度及第三單元近代西方資本主義政治制度的確立與發(fā)展明確相關(guān),有承上啟下的作用。二、活動重點設(shè)計理解西歐封建社會的政治特點及對后世的影響;正確認識基督教文明
教學(xué)目標1.知識與技能目標:結(jié)合實例理解影響工業(yè)區(qū)位選擇的因素。聯(lián)系實際理解工業(yè)區(qū)位的發(fā)展變化。理解環(huán)境對工業(yè)區(qū)位的影響。2.過程與方法目標:利用圖表,分析影響 工業(yè)區(qū)位,培養(yǎng)學(xué)生應(yīng)用基礎(chǔ)知識及讀圖分析能力。了解本地工業(yè)發(fā)展情況,培養(yǎng)學(xué)生的分析能力。3.情感態(tài)度價值觀:通過對工業(yè)區(qū)位因素的學(xué)習(xí),激發(fā)學(xué)生探究地理問題的興趣。由環(huán)境對工業(yè)區(qū)位選擇的影響,培養(yǎng)學(xué)生的環(huán)保意識,樹立工業(yè)發(fā)展必須走可持續(xù)發(fā)展之路的思想。教學(xué)重點1影響工業(yè)區(qū)位的主要因素;2.運用工業(yè)區(qū)選擇的基本原理對工廠進行合理的區(qū)位選擇。教學(xué)難點 判斷影響某個工廠區(qū)位的主導(dǎo)因素及其合理布局。教學(xué)方法 案例分析法、對比分析法、讀圖分析法、探究法教學(xué)用具 多媒體課件,圖表及補充材料課堂類型
知識與技能1.了解大牧場放牧業(yè)和乳畜業(yè)兩種農(nóng)業(yè)地域類型及其分布。2.通過學(xué)習(xí)大牧場放牧業(yè),學(xué)會分析農(nóng)業(yè)區(qū)位因素,訓(xùn)練讀圖分析能力。3.掌握大牧場放牧業(yè)在經(jīng)營方式、商品化、專業(yè)化、經(jīng)濟效益等方面的特點。4.解西歐乳畜業(yè)的形成因素。過程 與方法1.通過對潘帕斯草原大牧場放牧業(yè)區(qū)位因素的分析,學(xué)會歸納大牧場放牧業(yè)的區(qū)位條件。2.把西歐乳畜業(yè)和潘帕斯草原大牧場放牧業(yè)的區(qū)位條件作比較。情感態(tài)度與價值觀1.自然條件是農(nóng)業(yè)地域類型形成的條件,人類必須尊重自然規(guī)律,才能天人合一。2.人文條件也越來越大地影響到農(nóng)業(yè)的區(qū)位選擇,事物是發(fā)展的,不能用靜止的觀點看待問題?!窘虒W(xué)重點】1.理解大牧場放牧業(yè)和乳畜業(yè)兩類農(nóng)業(yè)地域類型的區(qū)位因素。2.利用圖表資料分析農(nóng)業(yè)區(qū)位因素的能力。
三、作出速度-時間圖像(v-t圖像)1、確定運動規(guī)律最好辦法是作v-t圖像,這樣能更好地顯現(xiàn)物體的運動規(guī)律。2、x y x1 x2 y2 y1 0討論如何在本次實驗中描點、連線。(以時間t為橫軸,速度v為縱軸,建立坐標系,選擇合適的標度,把剛才所填表格中的各點在速度-時間坐標系中描出。注意觀察和思考你所描畫的這些點的分布規(guī)律,你會發(fā)現(xiàn)這些點大致落在同一條直線上,所以不能用折線連接,而用一根直線連接,還要注意連線兩側(cè)的點數(shù)要大致相同。)3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當(dāng)中仍應(yīng)該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標系中,直線的斜率
3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當(dāng)中仍應(yīng)該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標系中,直線的斜率四、實踐與拓展例1、在探究小車速度隨時間變化規(guī)律的實驗中,得到一條記錄小車運動情況的紙帶,如圖所示。圖中A、B、C、D、E為相鄰的計數(shù)點,相鄰計數(shù)點的時間間隔為T=0.1s。⑴根據(jù)紙帶上的數(shù)據(jù),計算B、C、D各點的數(shù)據(jù),填入表中。