方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關(guān)于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設(shè)計勾股定理驗證拼圖法面積法簡單應用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應用勾股定理解決一些實際問題,學會勾股定理的應用并逐步培養(yǎng)學生應用數(shù)學解決實際問題的能力,為后面的學習打下基礎(chǔ).
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設(shè)計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
2.借助想象,初步感受延續(xù)想象畫的風格特點,嘗試用豐富的線條和色彩進行表現(xiàn)。 活動準備: 1.多媒體課件。2.幼兒繪畫工具:記號筆、油畫棒、畫紙?;顒舆^程: 1.出示課件,啟發(fā)幼兒想象,引起興趣。 師:小朋友,你們喜歡畫畫嗎?老師也非常喜歡,你們看我畫了什么?它象什么? 2.演示課件,初步感受延續(xù)想象畫的風格特點。 師:我覺得以前畫畫的方法不好玩,我想隨意畫。我在這幅畫的 上面添加了一條曲線,再畫上一條曲線和它相交,圖的中間畫一些弧線、圓圈,下面畫一條折線,看,一幅畫就畫好了。
活動目標:1、嘗試從前向后安排畫面,初步表現(xiàn)簡單的重疊。2、樂于參與造長城活動,為自己建造長城而感到自豪。 活動準備:1、黑色水筆、油畫棒。2、課件。 活動過程:一、欣賞討論:1、我們的首都在哪里?北京有哪些好玩的地方?2、這是什么地方?長城建造在哪里?它象什么?3、中國古代勞動人民為什么要建造長城?現(xiàn)在的長城有什么用處?
本章是第三章第一節(jié)的開端,學生在第二節(jié)已經(jīng)學習了元素的組成和一些生物大分子,本節(jié)課內(nèi)容是學會使用顯微鏡,這是生物學習過程中最為重要的一種手段之一。對于今后的實驗學習有著極其重要的作用。 學生中大部分同學在初中階段都有接觸過光學顯微鏡,所以在學習理論知識的時候能夠順利的進行,但因為學校的條件有限,不能保證同學們進行顯微鏡的實驗,本節(jié)課結(jié)合學生情況和實際情況,采用圖片和模型展示的方法進行。 知識與能力 1、概述細胞學說建立的過程。 2、概述細胞學說的內(nèi)容和意義。 3、學習制作臨時玻片標本,使用顯微鏡和繪圖的能。
2、鼓勵幼兒發(fā)揮想象,用泥板塑造出豐富、生動的形象;3、正確使用裝飾工具,注意活動時的衛(wèi)生與安全?;顒訙蕚洌?、泥工板、泥人手一份,抹布一組一條;2、牙簽、瓶蓋、麻布、樹葉等陶藝工具若干;3、幼兒已經(jīng)有過搟泥的經(jīng)驗;4、幻燈設(shè)備,電視機?;顒又笇В阂弧⒄n題:1、師:小朋友們,你們吃過面條嗎?(吃過)那你們會搟面嗎?(幼兒自由回答并大膽講述經(jīng)驗)。2、出示泥,教師示范搟面,邊示范邊引導回憶搟泥的經(jīng)驗,激發(fā)幼兒參與活動的興趣。
出示例6掛圖。教師試問:誰知道0.50元是幾角?2.00元是幾角?你是怎么知道?以元為單位小數(shù)點左邊是幾就是幾元,右邊第一位是幾就是幾角,右邊第二位是幾就是幾分。1.20元是1元2角。35.90元是35元9角。(這部分知識學生知道它表示幾元幾角就可以了,至于1.20元是個什么數(shù),怎么讀、寫不需要學生掌握)3、教學例7。(1) 課件演示例7第一小題。教師:0.5元是幾角?(5角)0.80元是幾角?(8角)學生回答。5角+8角是幾角?(5角+8角=13角教師板書)教師問:多少角是1元?13角里面拿出10角還剩多少角?(3角)所以13角等于1元3角。教師板書:5角+8角=13角=1元3角。(2)例7第二小題(課件演示,提出問題:我買這兩個氣球要多少錢)學生嘗試完成,然后提問:你是怎么想的?教師強調(diào):元、角計算,只有在相同單位的情況下,才能相加。
教師活動創(chuàng)設(shè)情境導入新課 1、 同學們,今天有這么多老師和我們一起上課,你們高興嗎?我們必須拿出最優(yōu)秀的一面展現(xiàn)給老師,大家能做到嗎?2、同學們喜歡逛超市嗎?你們?nèi)コ懈墒裁窗。I東西要用什么來付款?世界上有很多種錢,你知道我們國家的錢叫什么嗎?對,我們國家的錢叫人民幣,今天這節(jié)課我們就一起來認識人民幣。(板書:認識人民幣)探索交流解決問題1、 你們都認識哪些人民幣?(找學生說說)2、 你知道古代人用什么錢嗎?下面我們就一起來看看人民幣的歷史。人民幣是指由中國人民銀行發(fā)行、在全國范圍內(nèi)流通的中華人民共和國法定貨幣。從1948年12月到現(xiàn)在,中國人民銀行一共發(fā)行了五套人民幣。分別是:1948年12月1日發(fā)行的第一套人民幣;1955年3月1日發(fā)行的第二套人民幣;1962年4月15日發(fā)行的第三套人民幣;1987年4月27日發(fā)行的第四套人民幣。還有1999年10月1日發(fā)行的第五套人民幣也就是目前市場上流通的人民幣。 請同學們仔細觀察,這些錢你們都認識嗎?(屏幕顯示)人民幣上有什么?(國徽)國徽是我們國家的標志,許多人民幣上都有國徽,所以我們應該愛護它,不要故意損壞它。瞧,我們國家的人民幣有這么多呢!有些是紙做的,叫紙幣,(課件突出顯示紙幣)有的是金屬做的,叫硬幣。(課件突出顯示硬幣)2、特征辨認。師:這些人民幣你們都認識嗎?3、 師:那好,老師來考考你們這張人民幣的面值是多少?你是怎么知道的?(同學們觀察的真仔細)4、 看下面幾張你都認識嗎?5、 同學們學的真認真,老師中午回家要乘坐無人售票車,這種車要求自覺投幣1元而不找零錢,老師只有一張10元的人民幣,老師該怎么辦哪?6、誰能幫老師換換錢?
人民幣的簡單計算是在對人民幣的認識后,是人民幣的再進一步的認識。本節(jié)課的主要知識點主要有三個:一人民幣單位間的換算、二進行簡單的計算,三是知道商品價格的表示形式。同時通過這節(jié)課的學習,逐漸培養(yǎng)交往和社會實踐能力,體會人民幣在社會生活商品交換中的作用。為了達成以上的一些目標我是這樣設(shè)計這節(jié)課。一、從學生經(jīng)驗入手直接引入商品價格,在學生回憶商品價格的表示方法中,喚醒學生的思緒,使學生覺得在所學的知識與實際生活的聯(lián)系。讓學生體驗到數(shù)學與日常生活的密切聯(lián)系。二、在操作中完成進率的換算。進率的換算在教學是一個重點也是難點,為此我在教學上通過不同的的付錢方法,深刻體會,這樣的教學讓說不清的關(guān)系,在操作講解中得以內(nèi)化。學生學了也不易忘記。
師:同學們,在四年級的時候,我們已經(jīng)了解了圖形的密鋪,請你說一說,什么是圖形的密鋪?(沒有重疊、沒有空隙地鋪在平面上,就是密鋪。)師:圖形的密鋪又可以叫做鑲嵌,以上四個圖片,都是由哪些基本圖形密鋪(鑲嵌)而成的呢?(請學生邊指邊說。)師:還有哪些圖形也可以鑲嵌?(學生可能回答:三角形,平行四邊形,梯形,菱形,正六邊形,……)師:今天就請你發(fā)揮一下想象力,設(shè)計一些與眾不同的鑲嵌圖形。[設(shè)計意圖說明:學生在四年級已經(jīng)初步了解了圖形的密鋪(鑲嵌)現(xiàn)象,四幅圖片是四年級下冊教材《三角形》單元中《密鋪》內(nèi)容中的原圖。本單元在此基礎(chǔ)上,通過數(shù)學游戲拓展鑲嵌圖形的范圍,讓學生用圖形變換設(shè)計鑲嵌圖案,進一步感受圖形變換帶來的美感以及在生活中的應用。]二、新授探究一:利用平移變換設(shè)計鑲嵌圖形
教學要求1. 通過生活中的事例,學會解決“找次品”這類問題的思想方法。2. 體會解決問題策略的多樣性及運用優(yōu)化的方法解決問題的有效性。3. 感受到數(shù)學在日常生活中的廣泛應用,培養(yǎng)應用意識和解決實際問題的能力。學情分析有化是一種重要的數(shù)學思想方法,可有效地分析和解決問題。本單元主要以“找次品”這一操作活動為載體,讓學生通過觀察、猜測、推理的方法感受解決問題策略的多樣性,在此基礎(chǔ)上,通過歸納、推理的方法體會運用優(yōu)化策略解決問題的有效性,感受數(shù)學的魅力。這些內(nèi)容對五年級的學生來說有一定的難度,所以應讓學生在具體操作和試驗中感悟、體會,由此使學生養(yǎng)成勤于思考、勇于探索的精神。教學重點學會解決“找次品”這類問題的方法。
教學目標:知識與技能:1、使學生初步體會對策論方法在解決實際問題中的應用。2使學生認識到解決問題策略的多樣性,形成尋找解決問題最優(yōu)方案的意識。3、培養(yǎng)學生的應用意識和解決實際問題的能力。過程與方法:使學生理解優(yōu)化的思想,形成從多種方案中尋找最優(yōu)方案的意識,提高學生解決問題的能力。情感、態(tài)度和價值觀:使學生感受到數(shù)學在日常生活中的廣泛應用,嘗試用數(shù)學的方法解決生活中的簡單問題。重點:體會優(yōu)化的思想難點:尋找解決問題最優(yōu)方案,提高學生解決問題的能力。教具:圖片教學過程:一、情境導入:1、你們聽過“田忌賽馬“的故事嗎?田忌是怎樣贏了齊王的?誰能給大家講一講這個故事?2、問:田忌的馬都不如齊王的馬,但他卻贏了?這是為什么呢?3、這節(jié)課我們就來研究研究。板書課題:數(shù)學廣角
(一)創(chuàng)設(shè)問題情境:師:小朋友,你們喜歡老師漂亮一點呢還是喜歡老師丑一點?生:大多數(shù)的小朋友說喜歡老師漂亮。師:那你們幫助老師打扮打扮。我最喜歡紅色體恤和這三件下衣,到底怎樣搭配最漂亮呢?請小朋友們給老師出出主意。小朋友們紛紛發(fā)表自己的意見,并說出了自己的理由。師:謝謝。你們的建議都不錯。那我這一件上衣、三件下衣能有多少種不同的穿法呢?老師接著問:那我有兩件上衣、三件下衣又有多少種不同的穿法呢?有說4種、有說5種、也有說6種的,到底有幾種呢?(二)1.自主合作探索新知試一試師:請同學們也試著想一想,如果你覺得直接想象有困難的話可以借助手中的學具卡片擺一擺。學生活動教師巡視。2.發(fā)現(xiàn)問題學生匯報所寫個數(shù),教師根據(jù)巡視的情況重點展示幾份,引導學生發(fā)現(xiàn)問題:有的重復了,有的漏寫了。
方法三:我先把數(shù)字1放在個位,然后把數(shù)字2和3分別放在十位組成21和31;我再把數(shù)字2放在個位,然后把數(shù)字1和3分別放在十位組成12和32;我再把數(shù)字3放在個位,然后把數(shù)字1和2分別放在十位組成13和23,一共擺出了6個兩位數(shù)。(21、31、12、32、13、23)每種方法說完后師問:還能擺嗎?(再擺就要重復了!提示:不能遺漏也不能重復)師小結(jié):排數(shù)的時候按照一定的順序既不會重復也不會遺漏。我們用3個不同的一位數(shù)拼成了幾個不同的兩位數(shù)?(板書:6個)可拓展:三只動物抽到卡片后最多能組成21、31、32那誰可以和聰聰一起坐呀?小貓很幸運,他抽到了2和3,那么他一定會擺出一個……(三)握手小動物們謝謝我們幫他們一起解決了這些數(shù)學問題,一定要讓老師表示謝意,好謝謝你們。(老師過去和學生握手。分別找?guī)讉€人握手,讓學生觀察,每兩個人握一次手。)
1、同學們都聽說過“曹沖稱象”的故事吧!曹沖是怎么稱出大象的重量的呢?讓我們一起來回顧這一過程。2、曹沖是把大象的重量轉(zhuǎn)換成了什么的重量呢?【他是把大象的重量轉(zhuǎn)換成了與它重量相等的石頭的重量】因為當時沒有那么大的稱能直接稱出大象的重量,所以曹沖就用石頭的重量代換了大象的重量,稱出了石頭的重量也就知道了大象的重量。3、同學們,你們大概還不知道吧,曹沖確實非常了不起,他運用了一種重要的數(shù)學思考方法——等量代換。【板書:數(shù)學廣角——等量代換】這節(jié)課我們就來學習如何用“等量代換”的方法解決問題。二、引導探究發(fā)現(xiàn)規(guī)律1、今天這節(jié)課,老師給同學們帶來了神秘的禮物。猜猜,什么樣的孩子能夠得到它們?全班?個大組,哪組的成員在參與過程中積極主動,認真動腦思考,遵章守紀,老師就獎勵這個組一個青蘋果,三個青蘋果可以換一個紅蘋果,兩個紅蘋果可以換取一份神秘的禮物。看看哪個組能得到禮物。有信心嗎?老師相信你們是最棒的。
一、初步感知間隔的含義1、請同學們伸出右手,張開,數(shù)一數(shù),5個手指之間有幾個空格?在數(shù)學上,我們把 空格叫做間隔,也就是說,5個手指之間有幾個間隔?4個間隔是在幾個手指之間?2. 其實,這樣的數(shù)學問題,在我們的生活中,隨處可見。誰能舉幾個這樣的例子3、看圖:在畫面上我們看到春天桃紅柳綠,到處是一派生機勃勃的景象,你們知道嗎?3月12日是什么日子,這一天全國上下到處都在植樹,為保護環(huán)境獻出自己的一份力量。 出示圖:這里從頭到尾栽了幾棵樹,數(shù)一數(shù),它們之間又有幾個間隔呢?你發(fā)現(xiàn)了什么?誰來說一說?同時板書。4、那你能像這樣用一個圖表示出來嗎?請你們選擇一種動手畫一畫吧!5、匯報:畫了8棵樹,他們之間有7個間隔數(shù),9棵樹之間有8個間隔?!?、你發(fā)現(xiàn)植樹棵樹和間隔數(shù)之間有什么規(guī)律呢?(自己先想想,再把你的想法和伙伴們互相交流一下)。反饋:誰來說說你的發(fā)現(xiàn)?評價:哦,這是你的發(fā)現(xiàn)……你還能用一個算式來概括。邊板書邊說:同學們都發(fā)現(xiàn)了從頭到尾栽一排樹時,植樹棵樹比間隔數(shù)多1,(指表格),也可以寫成兩端要栽時,植樹棵數(shù)-間隔數(shù)+1,間隔數(shù)=植樹棵樹-1。
雖然在此之前已經(jīng)聽過多節(jié)有關(guān)的研討課,但臨到自己教學時才真正體會到本課教學的艱難。一是信息化時代對郵政編碼的沖突。其實我在教學前也僅僅只知道學校和家庭住址的郵編,至于郵政編碼的結(jié)構(gòu)含義等是完全陌生。在課堂前測中了解到,全班僅3人有寫信寄信的經(jīng)歷(這三名學生的老家都遠離湖北?。?,他們知道老家的郵編,全班有半數(shù)左右的家庭收集不到已經(jīng)郵寄過的舊信封??梢哉f在學習本課前師生對郵政編碼都是知之甚少,教師本身都只“半勺水”,何以給學生“一杯水”?雖然在課前布置學生收集了一些有關(guān)郵政編碼的知識,自己也進行了大量的查詢,但在實際教學中仍舊倍感吃力。如有學生質(zhì)疑“為什么書上北京人民出版社的郵編是100008,它的第三、四位都是0呢”;“為什么我們學校的郵編4300XX第三、四位也是0呢”;“郵區(qū)是不是指什么市?”“郵區(qū)與市、區(qū)、縣有什么關(guān)系?”一個接一個問題“炮轟”過來,著實招架不住。
一、創(chuàng)設(shè)情境,猜想驗證1.猜一猜,摸一摸。一盒粉筆若干支,5種不同的顏色。至少摸幾支能保證:(1)2支同色的。(2)3支同色的。(3)4支同色的。2.想一想,摸一摸。請學生獨立思考后,先在小組內(nèi)交流自己的想法,再動手操作試一試,驗證各自的猜想。在這個過程中,教師要加強巡視,要注意引導學生思考本題與前面所講的抽屜原理有沒有聯(lián)系,如果有聯(lián)系,有什么樣的聯(lián)系,應該把什么看成抽屜,要分放的東西是什么。二、觀察比較,分析推理1.說一說,在比較中初步感知。2.想一想,在反思中學習推理。三、深入探究,溝通聯(lián)系四、對比練習,感悟新知1.說一說。把紅、黃、藍、白四種顏色的球各10個放到一個袋子里。至少取多少個球,可以保證取到兩個顏色相同的球?2.算一算。向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?五、總結(jié)評價六、布置作業(yè)
教材分析:"雞兔同籠"問題是我國民間廣為流傳的數(shù)學趣題,最早出現(xiàn)在《孫子算經(jīng)》中。教材在本單元安排“雞兔同籠”問題,一方面可以培養(yǎng)學生的邏輯推理能力;另一方面使學生體會代數(shù)方法的一般性。“雞兔同籠”的原題數(shù)據(jù)比較大,不利于首次接觸該類問題的學生進行探究,因此教材先編排了例1,通過化繁為間的思想,幫助學生先探索出解決該類問題的一般方法后,再解決《孫子算經(jīng)》中數(shù)據(jù)比較大的原題。解決“雞兔同籠”問題時,教材展示了學生逐步解決問題的過程,既猜測、列表、假設(shè)或方程解。其中假設(shè)和列方程解是解決該類問題的餓一般方法?!凹僭O(shè)法”有利于培養(yǎng)學生的邏輯推理能力,列方程則有助于學生體會代數(shù)方法的一般性。因此在解決“雞兔同籠”問題時,學生選用哪種方法均可,不強求用某一種方法。