(二)持續(xù)提升網(wǎng)辦能力。全面推行政務(wù)服務(wù)事項“網(wǎng)上可辦”“全程網(wǎng)辦”“掌上辦”“指尖辦”“自助辦”。狠抓落實“一網(wǎng)通辦”各項數(shù)據(jù)指標(biāo)提升工作,努力保持“一網(wǎng)通辦”工作成績在全市第一梯隊。(三)推進(jìn)綜窗改革。嚴(yán)格按照“應(yīng)進(jìn)必進(jìn)”原則,完成14個部門集中進(jìn)駐并授權(quán)到位,已進(jìn)駐部門完成自查“明進(jìn)暗不進(jìn)”,確保事項全部進(jìn)駐并授權(quán)到位;同步推動“一窗受理”到位,7月底前,“分領(lǐng)域?qū)^(qū)綜合窗口”逐步推動業(yè)務(wù)整合,科學(xué)整合壓縮窗口,削減行政成本,全面實施“集成服務(wù)”?!盁o差別綜合窗口”根據(jù)我縣實際情況,推進(jìn)落實綜窗接件人員到位,完成除9個分領(lǐng)域外的其它所有事項整合進(jìn)駐無差別綜窗,由政務(wù)服務(wù)中心綜窗接件、統(tǒng)一推送、內(nèi)部流轉(zhuǎn)至部門審批、再綜窗出件,扭轉(zhuǎn)辦件量少的部門也需派駐人員的財政經(jīng)費浪費,實現(xiàn)效率集成、成本壓縮。
(四)科學(xué)安排支出預(yù)算。牢固樹立過緊日子思想,有效壓減一般性支出和非急需、非剛性支出,優(yōu)化支出結(jié)構(gòu),積極保障市委、市政府的重大戰(zhàn)略資金需要。對非生產(chǎn)性大專項能壓則壓、能減則減,科學(xué)推進(jìn)項目實施,堅持有多大財力辦多大事。加強對“三?!鳖A(yù)算執(zhí)行監(jiān)控,建立支出定期調(diào)度機制,壓實“三?!敝С鲐?zé)任,兜牢兜實基層“三?!钡拙€,確保不出風(fēng)險。(五)積極化解財政風(fēng)險。一是防范化解地方政府債務(wù)風(fēng)險,堅決遏制增量、化解存量,守住安全的底線。二是積極向省廳爭取化債政策支持,提高地方政府一般債券占比,優(yōu)化政府債券結(jié)構(gòu)。同時適當(dāng)加大再融資債券的發(fā)行規(guī)模,用于置換存量債務(wù),有效緩解地方財政資金壓力。三是繼續(xù)加大暫付款清理和債券利息催繳工作,提高市級財政庫款調(diào)控能力。
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學(xué)生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學(xué)生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
一、單項選擇題1.C 此題考查生命的特點,AD 選項前面說的都對,但是后面說的都不對。因為: 人生難免風(fēng)險、挫折和坎坷,是逃離不了的,拒絕不了的。生命是獨特的,不能 相互替代,所以 B 也是錯的。C 符合題意正確。 2.①②③都體現(xiàn)對生命的尊重和敬畏,而④表達(dá)的是一種消極避世的人生態(tài)度 ; 因此錯了。所以,正確答案 D。3.最美逆行不是沒有安全意識,相反,他們能做到敬畏生命,堅持生命至上。因 此,②選項錯了,其他選項都符合題意。所以正確答案是 D。4. (1) 主題是:敬畏生命(2) 圖 1,祭奠生命,表達(dá)對逝者的追悼和懷念。這么做是為了悼念生命,體 現(xiàn)對生命的尊重,體會生命之間是息息相關(guān)的。圖 2,生命是崇高的、神圣的,是任何代價都換取不來的。我們對生命要有一種 敬畏的情懷。
①②③分析題干中,我們生命的意義不在于長短,而在于對社會的貢獻(xiàn),將個體生 命和國家的甚至人類的命運聯(lián)系在一起時,生命就會閃耀出偉大,活出自己的精彩,讓 生命更加絢爛,故①②③說法符合題意;④“追求生命個性和韌性”說法不符合主題故 ④說法錯誤;2.C【設(shè)計意圖】該題考查呵護(hù)食品安全,珍愛生命。 ④說法雖然正確的,但是主體不符,不是市民的做法。故不能入選。 3.A【設(shè)計意圖】本題考查對生命的傳承。①②④材料中的話意在告訴我們,在人類生命的接續(xù)中,我們應(yīng)該為自己的生命找 到一個位置,擔(dān)當(dāng)一份使命;在生命的傳承關(guān)系中,我們應(yīng)該正確認(rèn)識和面對自己的生 命;我們每個人都不僅僅是在身體上接續(xù)祖先的生命,也在精神上不斷繼承和創(chuàng)造人類 的文明成果,故①②④說法正確;③生命屬于我們每個人,生命的接續(xù)和發(fā)展與我們每 個人息息相關(guān),故③說法錯誤。
B 等級——較積極參與采訪活動;采訪思路較清晰,記錄較完整;能對自己的生 命觀、價值觀有所反思;能主動展示心得體會。C 等級——基本上能參與采訪活動,遇到困難會想放棄;記錄信息較少,只有少 量與主題有關(guān);對自己生命觀、價值觀理解不深;有一點成果反饋,內(nèi)容過于簡 單。總體評價結(jié)果: (四) 作業(yè)分析與設(shè)計意圖這是一項基于素質(zhì)教育導(dǎo)向的整體式課時作業(yè)設(shè)計,以培養(yǎng)學(xué)生核心素養(yǎng)為 目標(biāo)。作業(yè)以學(xué)生的“生命故事訪談”為主要情境,以填寫活動記錄的形式呈現(xiàn)。 教師從“參與態(tài)度、思想認(rèn)識”等四個維度對作業(yè)進(jìn)行評價,以“優(yōu)秀、 良好、 合格”三個等級呈現(xiàn)。本次實踐性作業(yè)是訪談型作業(yè),課前采訪希望通過學(xué)生的 參與,一方面鍛煉學(xué)生的人際交往能力和口頭語言表達(dá)能力,另一方面擴展學(xué)生 的生活閱歷,從他人的精彩故事中獲得啟示,激發(fā)學(xué)生對生命的熱情,樹立正確 的人生觀,同時也為下一框題的“平凡與偉大”提供教學(xué)素材,活出自己生命的 精彩。
作業(yè)二(一)、作業(yè)內(nèi)容情境探究、互聯(lián)網(wǎng)將地球縮成一張小小的“網(wǎng)”。在這張“網(wǎng)”里,我們可 以發(fā)布信息、瀏覽新聞、結(jié)交好友等,為我們的人際交往擴展了新通道。情境一 中學(xué)生小強在一個論壇上認(rèn)識了小胡,他們在很多問題上看法一致, 很快成為無話不談的好朋友。經(jīng)常徹夜長談興趣愛好、閑聊家庭狀況、相約打游 戲。 有一天,小胡邀請小強一起去參與網(wǎng)絡(luò)賭博,小強猶豫了。(1)請運用《網(wǎng)上交友新時空》的相關(guān)內(nèi)容,結(jié)合材料,談一談:對于這樣的網(wǎng) 友,小強應(yīng)該怎樣做?情境二 小強拒絕小胡以后,開始找借口疏遠(yuǎn)小胡。小胡察覺后,開始“變臉” 郵寄各種恐嚇信和物品到小強家。小強忍無可忍選擇了報警。(2)小強的網(wǎng)絡(luò)交往經(jīng)歷,給我們中學(xué)生參與網(wǎng)絡(luò)交往哪些建議?
(四) 作業(yè)分析與設(shè)計意圖通過本題引導(dǎo)學(xué)生認(rèn)識到網(wǎng)上交友的積極影響,認(rèn)識到網(wǎng)上交往的弊端和網(wǎng) 絡(luò)交友應(yīng)慎重,需要考慮對自己學(xué)習(xí)和生活的影響,學(xué)會理性辨別、慎重選擇。 引導(dǎo)學(xué)生正確看待網(wǎng)上交友與現(xiàn)實交友。本題難度適中,領(lǐng)悟到材料意思,把握 書本重難點知識,即可做出正確選擇。本題意在幫助中學(xué)生辯證認(rèn)識網(wǎng)上交友給他們的生活帶來的影響,既看到互 聯(lián)網(wǎng)對交友的積極影響,也看到互聯(lián)網(wǎng)對交友的消極影響;提示學(xué)生在網(wǎng)上交友 要具有自我保護(hù)意識,要慎重對待網(wǎng)上朋友轉(zhuǎn)化為現(xiàn)實中的朋友;鼓勵學(xué)生學(xué)會 在現(xiàn)實中與同伴交往。六、單元質(zhì)量檢測( 一) 單元質(zhì)量檢測內(nèi)容一、單項選擇題1.在友誼的長河里,我們深深淺淺地跋涉著,經(jīng)歷著不同的體驗,積累著各自的 感受。檢視自己對友誼的認(rèn)識,下列觀點正確的是 ( )A. 競爭必然傷友誼,要尋求合作避免競爭B. 學(xué)會接受友誼淡出,坦然接受新的友誼C. 朋友應(yīng)相互幫助,考試遞小抄可以理解D. 幫助朋友教訓(xùn)某人,哥們兒義氣必不可少
選擇題1.打開網(wǎng)頁,你可以看新聞、聽音樂、玩游戲、交朋友、查資料、購 物、學(xué)習(xí)等。這從一個側(cè)面說明了 ( )A.網(wǎng)絡(luò)可以實現(xiàn)我們的一切愿望B.網(wǎng)絡(luò)交往成為我們生活中不可缺少的部分C.網(wǎng)絡(luò)生活很豐富D.網(wǎng)絡(luò)交往是把鋒利的雙刃劍2. 只要上網(wǎng),就等于與世界握手??葱侣?,辦商務(wù)、結(jié)交朋友、求醫(yī) 問藥、不用舟車勞頓,不用費事周折。這一切說明 ( )A.網(wǎng)絡(luò)使交流便利,卻使人的思想退化B.網(wǎng)絡(luò)給了很多人可以偷懶的機會C.人們的交往都必須依賴于網(wǎng)絡(luò)D.網(wǎng)絡(luò)生活很豐富,網(wǎng)絡(luò)溝通無極限非常方便、快捷。這說明 ( )A.網(wǎng)絡(luò)交往超越了空間B.網(wǎng)絡(luò)交往提高了人們社會活動的質(zhì)量C.網(wǎng)絡(luò)交往有利無弊D.網(wǎng)絡(luò)交往改變了我們的人生價值4.比爾 ·蓋茨曾說過:“你甚至不知道和你交流的對方是一條坐在電腦 前會敲擊鍵盤的狗。 ”這說明 ( )3.在小明的眾多網(wǎng)友中,有大學(xué)生、參加興趣班的朋友、同學(xué)和老師。學(xué)習(xí)之余,他經(jīng)常上網(wǎng)聊天;遇到問題,他會在網(wǎng)上向同學(xué)和老師請教,
3.下列做法,能使我們在交往中不斷完善的有 ( )①不斷結(jié)識新朋友 ②擇其善者而從之,其不善者而改之③結(jié)識新朋友,不忘老朋友 ④只和比自己成績好、家境好的人交朋友。A. ①②④ B. ①②③ C. ②③④ D. ①③④ 4.古人云: “近朱者赤,近墨者黑。 ”這句話表明 ( )①朋友多是好事,朋友越多越好②朋友對一個人的影響很大③結(jié)交好的朋友,會使我們受益終身④結(jié)交壞的朋友,會使我們?nèi)旧蠅乃枷?、壞毛病A. ①②③ B. ①②④ C. ①③④ D. ②③④ 5.馬克思說:“友誼需要忠誠去播種,熱情去灌溉,原則去培養(yǎng),諒解去護(hù)理。” 下列觀點符合這句話的有 ( )①以真誠換取友誼 ②以熱情培養(yǎng)友誼③以寬容維護(hù)友誼 ④以原則純化友誼A. ①②③ B. ①②④ C. ①③④ D.①②③④ 6.說到友誼,很多人都會想到管鮑之交、桃園結(jié)義、馬克思和恩格斯的革命友 誼……這些友誼穿越時空、流傳千古,令人向往。從中我們可以看出 ( )①友誼是人生的寶貴財富 ②益友給我們溫暖和力量,讓我們感受生活的美好③與朋友在一起總是幸福 ④朋友與我們是親緣關(guān)系,需要彼此忠誠A. ①② B. ①③ C. ②④ D. ③④