If you are sandy,, you want to invite you good friends to come to you party, and you need their help, too..Make a list of things you want to buy and to do first, then discuss in group,act it out..讓學生進行評價.評出有特色的“最佳表演”“最佳創(chuàng)意”“最…”小組,給予獎勵。6.總結本課的target language.7.Homework.Invite your friends to have a picnic with you, and ask for their help to prepare for the picnic.. make a conversation. 8.教學反思如何激發(fā)學生的興趣, 使他們主動積極地參與活動,開展合作學習, 使課堂充滿活力,使設計的每個任務產生實效, 這是任務型教學中的首要問題. 本節(jié)課開展小組競賽, 任務鏈為:游戲熱身( 鞏固詞匯), 討論(學習運用句型), 表演(綜合運用)等活動, 逐步遞進, 從簡到難, 從談論Sally 的周末, 到談自己一周里所干的家務,電話邀請和請求幫助 ,都是來自現實生活的話題, 極具真實性. 為學生綜合表達提供了豐富的素材.讓學深入、讓學生參與過程的評價體現了以學生為主體的教學理念.
在任務環(huán)活動中,我通過設計不同的四個任務,讓學生在小組中交流、合作、競爭,每個任務都存在著一定的“信息差”,易于激發(fā)學生的表達欲望和急于知道最終結果的心情,在活動中他們一定會努力表現自己,做到最好。四個任務所側重的訓練學生的語言能力的要求也各有不同,他們分別側重訓練學生的聽、說、讀、寫的能力。把任務活動放在小組中進行,還可以解決“大班”難于操練的難題,學生在小組中有更多的時間來運用英語表達自己的思想。Post-task任務后活動(4”)1. Grammar Focus(2”)Go through the Grammar Focus with the whole class,ask Ss to point out the main points in this period. Then show the use of The Past Tense on the screen, especially the regular and irregular changes of verbs. 2. Language practice(2”)Practise the sentence patterns and the use of the Past Tense, especially the errors which Ss made while carrying out their tasks. Such as Subject-verb agreement or Tense-agreement, etc. For example: were you see any sharks? He go to the beach. 在學生盡情地參與活動后再讓學生反思本節(jié)課的語法焦點,并進行適當的操練,對學生在任務活動中的語言失誤進行糾正,使學生保持學習信心。語法講解采用動畫形式又保持了學生的學習興趣。
1. 教學重點(1)新單詞及目標語言的掌握。(2)聽、說、讀、寫的綜合訓練。(3)對對合作及小組合作練習口語的訓練。2. 教學難點(1)when所引導的特殊疑問句。(2)詢問生日與出生年月日的區(qū)別。When is your birthday? (一般現在時)When were you born?(一般過去時) (3)表達年月日時所用的不同介詞:in+年/月;on+日期二、教學方法。由淺入深,由易到難,由已知到未知,從學生熟悉的運動明星、電影明星甚至是歌手入手,調動他們的學習積極性,讓他們在心情愉快、興趣濃厚的氛圍中展開一系列聽說讀寫的訓練,主動地投入到學習中去,自然地掌握本單元的重點、難點;循序漸進地深化教學內容,同時以訓練學生聽說為主,展開以老師為主導,以學生為主體的師生雙邊互動活動。三、教學手段。利用名人圖片來輔助新的語言知識的鞏固和訓練;采用多媒體教學,并把聽力內容錄到電腦中,鍛煉了學生的視聽能力,提高了教學效果。
我們遇到的往往就是這樣的方程組,我們要想比較簡捷地把它解出來,就需要轉化為同一個未知數系數相同或相反的情形,從而用加減消元法,達到消元的目的.請大家把解答過程寫出來.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據上面幾個方程組的解法,請同學們思考下面兩個問題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學生分組討論、總結并請學生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個方程中同一個未知數系數的絕對值的最小公倍數,然分別在兩個方程的兩邊乘以適當的數,使所找的未知數的系數相等或互為相反數.②加減消元,得到一個一元一次方程.③解一元一次方程.
③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據所給條件寫出簡單的一次函數表達式是本節(jié)課的重點加難點,所以在解決這一問題時及時引導學生總結學習體會,教給學生掌握“從特殊到一般”的認識規(guī)律中發(fā)現問題的方法。類比出一次函數關系式的一般式的求法,以此突破教學難點。在學習過程中,我巡視并予以個別指導,關注學生的個體發(fā)展。經學生分析:(1)當月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當x=1760時,y=0.05×(1760-1600)=8(元);(3)設此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學效果課前:通過本節(jié)課的學習,教學目標應該可以基本達成,學生能夠理解一次函數和正比例函數的概念,以及它們之間的關系,并能正確識別一次函數解析式,能根據所給條件寫出簡單的一次函數表達式,且通過本節(jié)課的學習學生的抽象思維能力,數學應用能力都能有所提升,
引導學生回憶所學知識。通過這節(jié)課的學習你得到什么啟示和收獲?談談你的感受.目的:總結回顧學習內容,有助于學生養(yǎng)成整理知識的習慣;有助于學生在剛剛理解了新知識的基礎上,及時把知識系統(tǒng)化、條理化。(四)作業(yè)布置加強“教、學”反思,進一步提高“教與學”效果。四、說板書設計采用了如下板書,要點突出,簡明清晰。一次函數正比例函數圖像的畫法:確定兩點為(0,0)和(1,K)一次函數選擇的兩點為:(0,k)和(-b\k,0)五、說課后小結實踐證明,在教學中,充分利用教學方法的優(yōu)勢,為學生創(chuàng)造一個好的學習氛圍,來引導學生發(fā)現問題、分析問題從而解決問題。多媒體課件支撐著整個教學過程,令學生在一個生動有趣的課堂上,能愉快地接受知識
方法總結:要認真觀察圖象,結合題意,弄清各點所表示的意義.探究點二:一次函數與一元一次方程一次函數y=kx+b(k,b為常數,且k≠0)的圖象如圖所示,根據圖象信息可求得關于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數經過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結:此題主要考查了一次函數與一元一次方程的關系,關鍵是正確利用待定系數法求出一次函數的關系式.三、板書設計一次函數的應用單個一次函數圖象的應用一次函數與一元一次方程的關系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數與一元一次方程的關系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結二次根式的加減運算法則。2.四人小組探索、發(fā)現、解決問題,培養(yǎng)學生用數學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數學思想方法,提高學生的思維品質和興趣。
方法總結:(1)若被開方數中含有負因數,則應先化成正因數,如(3)題.(2)將二次根式盡量化簡,使被開方數(式)中不含能開得盡方的因數(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數是否還有分母,是否還有能開得盡方的因數或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質:(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯(lián)系,加深學生對運算法則的理解,能否根據問題的特點,選擇合理、簡便的算法,能否確認結果的合理性等等.
屬于此類問題一般有以下三種情況①具體數字,此時化簡的條件已暗中給定,②恒為非負值或根據題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內代數式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內的代數式為零,求出對應的“零點”,再用這些“零點”把數軸分成若干個區(qū)間,再在每個區(qū)間內進行化簡。
內容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復習公理:兩點之間線段最短;情景2的創(chuàng)設引入新課,激發(fā)學生探究熱情.效果:從學生熟悉的生活場景引入,提出問題,學生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎.第二環(huán)節(jié):合作探究內容:學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線.讓學生發(fā)現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結:解此類題要先求得頂點的坐標,即兩個一次函數的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數圖象獲取信息,解決簡單的實際問題,在函數圖象信息獲取過程中,進一步培養(yǎng)學生的數形結合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數學應用意識.
學習目標1.掌握兩個一次函數圖像的應用;(重點)2.能利用函數圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示.請你根據圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數圖象如下所示,結合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
3.想一想在例1中,(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標軸上點的坐標有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學有所用.補充:1.在下圖中,確定A,B,C,D,E,F,G的坐標。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F的坐標。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標系。2.在給定的直角坐標系中,由點的位置寫出它的坐標。3.能適當建立直角坐標系,寫出直角坐標系中有關點的坐標。4.橫(縱)坐標相同的點的直線平行于y軸,垂直于x軸;連接縱坐標相同的點的直線平行于x軸,垂直于y軸。5.坐標軸上點的縱坐標為0;縱坐標軸上點的坐標為0。6.各個象限內的點的坐標特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
方法總結:平行線與角的大小關系、直線的位置關系是緊密聯(lián)系在一起的.由兩直線平行的位置關系得到兩個相關角的數量關系,從而得到相應角的度數.探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構造同位角、內錯角或同旁內角,但是又要保證原有條件和結論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質),即∠B+∠BED+∠D=360°.方法總結:過一點作一條直線或線段的平行線是我們常作的輔助線.
解:設正比例函數的表達式為y1=k1x,一次函數的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數的表達式為y2=118x-52.方法總結:根據圖象確定一次函數的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數法將兩點的橫、縱坐標代入所設表達式中求出待定系數,從而求出函數的表達式.【類型三】 根據實際問題確定一次函數的表達式某商店售貨時,在進價的基礎上加一定利潤,其數量x與售價y的關系如下表所示,請你根據表中所提供的信息,列出售價y(元)與數量x(千克)的函數關系式,并求出當數量是2.5千克時的售價.
四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數形結合方法的重要性.學生若出現解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結內容:總結本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數的表達式,在確定一次函數的表達式時可以用待定系數法,即先設出解析式,再根據題目條件(根據圖象、表格或具體問題)求出 , 的值,從而確定函數解析式。其步驟如下:(1)設函數表達式;(2)根據已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數學思想方法:數形結合、方程的思想.目的:引導學生小結本課的知識及數學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據學生情況適當增減,但難度不應過大.
小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據題意可得到兩個相等關系:(1)1元賀卡張數+2元賀卡張數=8(張);(2)1元賀卡錢數+2元賀卡錢數=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結:要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數,即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數學模型,學會逐步掌握基本的數學知識和方法,形成良好的數學思維習慣和應用意識,提高解決問題的能力,感受數學創(chuàng)造的樂趣,增進學好數學的信心,增加對數學較全面的體驗和理解.
第一環(huán)節(jié):情境引入內容:(一) 情境1實物投影,并呈現問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學們,你們能否用數學知識幫助小馬解決問題呢?請每個學習小組討論(討論2分鐘,然后發(fā)言).教師注意引導學生設兩個未知數,從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數,我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .
方法總結:題中未給出圖形,作高構造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結:求解與直角三角形三邊有關的圖形面積時,要結合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關系.