一、回顧舊知,復(fù)習(xí)鋪墊1、上節(jié)課我們學(xué)習(xí)了一些比例的知識,誰能說一說什么叫做比例?比例的基本性質(zhì)是什么?應(yīng)用比例的基本性質(zhì)可以做什么?2、判斷下面每組中的兩個(gè)比是否能組成比例?為什么?6:3和8:4 : 和 :3、這節(jié)課我們繼續(xù)學(xué)習(xí)有關(guān)比例的知識,學(xué)習(xí)解比例。(板書課題)二、引導(dǎo)探索,學(xué)習(xí)新知1、什么叫解比例?我們知道比例共有四項(xiàng),如果知道其中的任何三項(xiàng),就可以求出這個(gè)比例中的另外一個(gè)未知項(xiàng)。求比例中的未知項(xiàng),叫做解比例。解比例要根據(jù)比例的基本性質(zhì)來解。2、教學(xué)例2。(1)把未知項(xiàng)設(shè)為X。解:設(shè)這座模型的高是X米。(2)根據(jù)比例的意義列出比例:X:320=1:10(3)讓學(xué)生指出這個(gè)比例的外項(xiàng)、內(nèi)項(xiàng),并說明知道哪三項(xiàng),求哪一項(xiàng)。根據(jù)比例的基本性質(zhì)可以把它變成什么形式?3x=8×15。這變成了什么?(方程。)教師說明:這樣解比例就變成解方程了,利用以前學(xué)過的解方程的方法就可以求出未知數(shù)X的值。
分別算出2008年比2007年各季度增產(chǎn)的百分?jǐn)?shù)和合計(jì)數(shù),再制成統(tǒng)計(jì)表.分析:根據(jù)題目要求,要算出各季度增產(chǎn)的百分?jǐn)?shù),我們只要根據(jù)2008年與2007年各個(gè)季度的原始數(shù)據(jù),運(yùn)用“求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾”的方法就可以算出.算出了各個(gè)季度增產(chǎn)的百分?jǐn)?shù),根據(jù)題意制統(tǒng)計(jì)表時(shí),既要按照季度分類,又要反映出年份的類別,所以在確定表頭時(shí)可分為3部分:年份、臺數(shù)、季度,年份又分為2007年產(chǎn)量、2008年產(chǎn)量、2008年比2007年增產(chǎn)的百分?jǐn)?shù).2、田力化肥廠今年第一季度生產(chǎn)情況如下:元月份計(jì)劃生產(chǎn)1500噸,實(shí)際生產(chǎn)1620噸;二月計(jì)劃生產(chǎn)1600噸,實(shí)際生產(chǎn)1680噸;三月份計(jì)劃生產(chǎn)1640噸,實(shí)際生產(chǎn)1720噸,根據(jù)上面的數(shù)據(jù),算出各月完成計(jì)劃的百分?jǐn)?shù),并制成統(tǒng)計(jì)表.(1)制作含有百分?jǐn)?shù)的統(tǒng)計(jì)表時(shí),百分?jǐn)?shù)這一欄一定要寫清楚是誰占誰的百分之幾,并按“求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾”的解題方法正確算出對應(yīng)百分?jǐn)?shù)”
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點(diǎn)A作AE⊥BC,過點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請你判斷到C城后還能接收到信號嗎?請說明理由.
我們知道圓是一個(gè)旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺階。下列圖中的兩個(gè)臺階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺階抽象地看成兩個(gè)三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個(gè)問題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
(3)烘托了人物怎樣的心情?作者采用寫意手法,從色彩、氣味、聲響等方面,描繪了夏夜行船、月夜歸航等畫面,充滿了水鄉(xiāng)特色,很好地烘托了“我”歡暢愉悅的心情,情景交融,令人難忘?!景盐瘴恼轮髦肌空n文結(jié)尾說:“真的,一直到現(xiàn)在,我實(shí)在再沒有吃到那夜似的好豆,——也不再看到那夜似的好戲了?!睂@個(gè)結(jié)尾應(yīng)該怎樣理解?你在生活中有這樣的體會嗎?其實(shí)那夜的戲,看得叫人“打呵欠”“破口喃喃的罵”;那夜的豆,第二天吃起來也實(shí)在平常。所謂“那夜似的好豆”“那夜似的好戲”,代表了作者對天真爛漫、自由有趣的童年美好的回憶,充滿一種浪漫的理想色彩,表現(xiàn)對人生理想境界的渴望和追求。第二問是開放性題目,同學(xué)們可根據(jù)自己的實(shí)際情況作答。
1.課文第一段介紹雕刻品核舟的主題是“蓋大蘇泛赤壁云”,哪些地方說明是“泛舟”呢?至少有三個(gè)地方說明是“泛舟”。第一,從“蘇、黃共閱一手卷”可知船行并不快;第二,從“舟尾橫臥一楫”船槳放在甲板上,可知“泛舟”;第三,從“舟子”“居右者……若嘯呼狀。居左者……若聽茶聲然”可知“泛舟”。2.課文如此細(xì)致地介紹核舟這一雕刻品的藝術(shù)形象,說明了什么?說明雕刻家構(gòu)思的巧妙,顯示出古代工藝美術(shù)的卓越成就,贊美了我國古代勞動者的高超技藝。3.本文題目有“記”字,是否意味著是記敘文?它與《桃花源記》是不是一種文體?這是一篇介紹事物的說明文。題目中的“記”在這里是描述、摹寫的意思。文章全面而真實(shí)地描述了雕刻在核舟上的人和物,活靈活現(xiàn),使人能領(lǐng)會神奇的雕刻技巧。
課時(shí)分配 建議本課依據(jù)學(xué)情分課時(shí)。第一課時(shí)進(jìn)行自主學(xué)習(xí)反饋及文意梳理、整體感知。第二課時(shí)進(jìn)行課文具體分析的交流展示及當(dāng)堂檢測??蛇m當(dāng)調(diào)節(jié)。教學(xué)目標(biāo) 知識與技能 1.掌握文章中的一些重點(diǎn)詞語的含義,積累一些文言知識。2.結(jié)合課后注釋,疏通文章意思,逐步提高文言文的朗讀和疏通能力。過程與方法 1.通過不同形式的朗讀,理解短文所闡明的深刻道理。2.通過合作探究的學(xué)習(xí)方式,引導(dǎo)學(xué)生體會文章語言的精妙。情感、態(tài)度與價(jià)值觀 注重對學(xué)生的情感熏陶,讓學(xué)生認(rèn)識封建統(tǒng)治者不識人才、埋沒人才的昏庸,引導(dǎo)學(xué)生認(rèn)識到在今天的優(yōu)越條件下,要努力使自己成為有用之才。
三維目標(biāo)1.知識與技能(1)讓學(xué)生經(jīng)歷用7、8、9的乘法口訣求商的過程,掌握用乘法口訣求商的一般方法。(2)使學(xué)生會綜合應(yīng)用乘、除法運(yùn)算解決簡單的或稍復(fù)雜的實(shí)際問題。2.過程與方法在解決問題的過程中,讓學(xué)生初步嘗試運(yùn)用分析、推理和轉(zhuǎn)化的學(xué)習(xí)方法。3.情感、態(tài)度與價(jià)值觀讓學(xué)生在學(xué)習(xí)中體驗(yàn)到成功的喜悅,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。重、難點(diǎn)與關(guān)鍵1.重點(diǎn):使學(xué)生熟練應(yīng)用乘法口訣求商,經(jīng)歷從實(shí)際問題中抽象出一個(gè)數(shù)是另一個(gè)數(shù)的幾倍的數(shù)量關(guān)系的過程,會用乘法口訣求商的技能解決實(shí)際問題。2.難點(diǎn):應(yīng)用分析推理將一個(gè)數(shù)是另一個(gè)數(shù)的幾倍是多少的數(shù)量關(guān)系轉(zhuǎn)化為一個(gè)數(shù)里面有幾個(gè)另一個(gè)數(shù)的除法含義。3.關(guān)鍵:以解決問題為載體,培養(yǎng)學(xué)生的數(shù)感。
三、估算度的把握。《標(biāo)準(zhǔn)》在計(jì)算教學(xué)方面強(qiáng)調(diào)的內(nèi)容之一是重視估算,培養(yǎng)估算意識。我們認(rèn)為重視估算,就是對學(xué)生數(shù)感的培養(yǎng),具體體現(xiàn)在能估計(jì)運(yùn)算的結(jié)果,并對結(jié)果的合理性作出解釋。本節(jié)課的設(shè)計(jì)就是讓學(xué)生在具體情境中,學(xué)會兩種估算方法,結(jié)合具體情況作出合理解釋。四、教會學(xué)生單元整理與復(fù)習(xí)的方法,使學(xué)生終身受益。我們知道授人以漁而非魚的道理。在本節(jié)課中,老師設(shè)計(jì)了引導(dǎo)學(xué)生學(xué)會整理與復(fù)習(xí)的方法,如:帶著問題看書,將算式分類、歸納、總結(jié)出本單元所學(xué)內(nèi)容,計(jì)算方法,注意地方,最后進(jìn)行有針對性的練習(xí)。如果我們的老師從小就有意識地對學(xué)生進(jìn)行學(xué)習(xí)方法的培養(yǎng),學(xué)生將終身受益。我想我們教學(xué)研討活動就是為了實(shí)現(xiàn)教育的最高境界:今天的教是為了明天的不教。
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱,根據(jù)點(diǎn)C在對稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱.∵點(diǎn)C在對稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
教學(xué)目標(biāo)1、通過教學(xué),學(xué)生懂得應(yīng)用加法運(yùn)算定律可以使一些分?jǐn)?shù)計(jì)算簡便,會進(jìn)行分?jǐn)?shù)加法的簡便計(jì)算.2、培養(yǎng)學(xué)生仔細(xì)、認(rèn)真的學(xué)習(xí)習(xí)慣.3、培養(yǎng)學(xué)生觀察、演繹推理的能力.教學(xué)重點(diǎn)整數(shù)加法運(yùn)算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計(jì)算簡便.教學(xué)難點(diǎn)整數(shù)加法運(yùn)算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計(jì)算簡便.教學(xué)過程設(shè)計(jì)一、復(fù)習(xí)準(zhǔn)備(演示課件:整數(shù)加法運(yùn)算定律推廣到分?jǐn)?shù)加法)下載1.教師:整數(shù)加法的運(yùn)算定律有哪幾個(gè)?用字母怎樣表示?板書:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應(yīng)用了什么運(yùn)算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分?jǐn)?shù)加法呢?這節(jié)課我們就一起來研究.二、學(xué)習(xí)新課(繼續(xù)演示課件:整數(shù)加法運(yùn)算定律推廣到分?jǐn)?shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關(guān)系?
探究點(diǎn)三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點(diǎn)在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時(shí),y隨x的增大而增大;k<0時(shí),y隨x的增大而減?。?、板書設(shè)計(jì)1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個(gè)函數(shù)的圖象的一般步驟:列表,描點(diǎn),連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點(diǎn)的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.
四、教學(xué)設(shè)計(jì)反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應(yīng)關(guān)系有點(diǎn)陌生.在教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對函數(shù)與圖象的對應(yīng)關(guān)系應(yīng)讓學(xué)生動手去實(shí)踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運(yùn)用“兩點(diǎn)確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動中,鼓勵(lì)學(xué)生積極思考,提高學(xué)生解決實(shí)際問題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計(jì)也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至對部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個(gè)正比例函數(shù)對應(yīng)的圖形具有什么特征呢?
解析:本題是要求兩個(gè)未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設(shè)投進(jìn)3個(gè)球的有x人,投進(jìn)4個(gè)球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進(jìn)3個(gè)球的有9人,投進(jìn)4個(gè)球的有3人.方法總結(jié):利用平均數(shù)的公式解題時(shí),要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯(cuò).三、板書設(shè)計(jì)平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過有關(guān)平均數(shù)問題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過解決實(shí)際問題,體會數(shù)學(xué)與社會生活的密切聯(lián)系,了解數(shù)學(xué)的價(jià)值,增進(jìn)學(xué)生對數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.
探究點(diǎn)三:函數(shù)的圖象洗衣機(jī)在洗滌衣服時(shí),每漿洗一遍都經(jīng)歷了注水、清洗、排水三個(gè)連續(xù)過程(工作前洗衣機(jī)內(nèi)無水).在這三個(gè)過程中,洗衣機(jī)內(nèi)的水量y(升)與漿洗一遍的時(shí)間x(分)之間函數(shù)關(guān)系的圖象大致為()解析:∵洗衣機(jī)工作前洗衣機(jī)內(nèi)無水,∴A,B兩選項(xiàng)不正確,淘汰;又∵洗衣機(jī)最后排完水,∴D選項(xiàng)不正確,淘汰,所以選項(xiàng)C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個(gè)變量的變化情況.三、板書設(shè)計(jì)函數(shù)定義:自變量、因變量、常量函數(shù)的關(guān)系式三種表示方法函數(shù)值函數(shù)的圖象在教學(xué)過程中,注意通過對以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,并通過層層深入的問題設(shè)計(jì),引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學(xué)生對函數(shù)概念的理解.