1.加速度與力的關(guān)系:實(shí)驗(yàn)的基本思路是保持物體的質(zhì)量不變,測(cè)量物體在不同的力的作用下的加速度,分析加速度與力的關(guān)系。有了實(shí)驗(yàn)的基本思路,接下去我們就要準(zhǔn)備實(shí)驗(yàn)器材,以及為記錄實(shí)驗(yàn)數(shù)據(jù)而設(shè)計(jì)一個(gè)表格。為了更直觀地判斷加速度與力的數(shù)量關(guān)系,我們以 為縱坐標(biāo)、 為橫坐標(biāo)建立坐標(biāo)系,根據(jù)各組數(shù)據(jù)在坐標(biāo)系中描點(diǎn)。如果這些點(diǎn)在一條過原點(diǎn)的直線上,說明 與 成正比,如果不是這樣,則需進(jìn)一步分析。2.加速度與質(zhì)量的關(guān)系:實(shí)驗(yàn)的基本思路是保持物體所受力不變,測(cè)量不同質(zhì)量的物體在該力作用下的加速度,分析加速度與質(zhì)量的關(guān)系。有了實(shí)驗(yàn)的基本思路,接下去我們就要準(zhǔn)備實(shí)驗(yàn)器材,以及為記錄實(shí)驗(yàn)數(shù)據(jù)而設(shè)計(jì)一個(gè)表格。為了更直觀地判斷加速度與質(zhì)量的數(shù)量關(guān)系,我們以 為縱坐標(biāo)、 為橫坐標(biāo)建立坐標(biāo)系,根據(jù)各組數(shù)據(jù)在坐標(biāo)系中描點(diǎn),根據(jù)擬合的曲線形狀,初步判斷 與 的關(guān)系是反比例函數(shù)。再把 圖像改畫為 圖像,如果是一條過原點(diǎn)的斜直線,說明自己的猜測(cè)是否正確。
生:還可以從表盤上直接讀出公里里程.師:日常生活中的“速度”有時(shí)指速度,也有時(shí)指速率,要看實(shí)際的物理情景。[討論與交流]甲、乙兩位同學(xué)用不同的時(shí)間圍繞操場(chǎng)跑了一圈,都回到了出發(fā)點(diǎn),他們的平均速度相同嗎?怎樣比較他們運(yùn)動(dòng)的快慢?學(xué)生討論,體驗(yàn)平均速度的缺陷,引入平均速率。生1:位移都是零,平均速度等于位移跟發(fā)生這段位移所用時(shí)間的比值,所以他們的平均速度都是零。生2:即使一位同學(xué)站在原地不跑,他的平均速度也是零啊,可我們運(yùn)動(dòng)會(huì)上不是這樣比快慢的,如果這樣,那多不公平啊?師:平均速度v=Δx/Δt,甲、乙的位移都為零,所以他們的平均速度也都等于零.在這里平均速度無法顯示他們運(yùn)動(dòng)快慢的不同,要用到另一物理量:平均速率.平均速率等于物體運(yùn)動(dòng)通過的路程跟所用時(shí)間的比值.他們兩人通過的路程相同且都不為零,但所用時(shí)間不同.顯然用時(shí)短的運(yùn)動(dòng)得快,也就是平均速率大.生:這不是我們初中學(xué)過的速度嗎?
【學(xué)習(xí)內(nèi)容分析】在行星運(yùn)動(dòng)規(guī)律與萬有引力定律兩節(jié)內(nèi)容之間安排本節(jié)內(nèi)容,是為了更突出發(fā)現(xiàn)萬有引力定律的這個(gè)科學(xué)過程。如果說上一節(jié)內(nèi)容是從運(yùn)動(dòng)學(xué)角度描述行星運(yùn)動(dòng)的話,那么,本節(jié)內(nèi)容是從動(dòng)力學(xué)角度來研究行星運(yùn)動(dòng)的,研究過程是依據(jù)已有規(guī)律進(jìn)行的演繹推理過程。教科書在尊重歷史事實(shí)的前提下,通過一些邏輯思維的鋪墊,讓學(xué)生以自己現(xiàn)有的知識(shí)基礎(chǔ)身于歷史的背景下,經(jīng)歷一次“發(fā)現(xiàn)”萬有引力的過程,因此體驗(yàn)物理學(xué)研究問題的方法就成為主要的教學(xué)目標(biāo)?!緦W(xué)情分析】在學(xué)太陽對(duì)行星的引力之前,學(xué)生已經(jīng)對(duì)力、重力、向心力、加速度、重力加速度、向心加速度等概念有了較好的理解,并且掌握自由落體運(yùn)動(dòng)和圓周運(yùn)動(dòng)等運(yùn)動(dòng)規(guī)律,能熟練運(yùn)用牛頓運(yùn)動(dòng)定律解決動(dòng)力學(xué)問題。已經(jīng)完全具備深入探究和學(xué)習(xí)萬有引力定律的起點(diǎn)能力。所以在推導(dǎo)太陽與行星運(yùn)動(dòng)規(guī)律時(shí),教師可以要求學(xué)生自主地運(yùn)用原有的知識(shí)進(jìn)行推導(dǎo),并要求說明每一步推理的理論依據(jù)是什么,教師僅在難點(diǎn)問題上做適當(dāng)?shù)狞c(diǎn)撥。
“做功的過程就是能量轉(zhuǎn)化過程”,這是本章教學(xué)中的一條主線。對(duì)于一種勢(shì)能,就一定對(duì)應(yīng)于相應(yīng)的力做功。類比研究重力勢(shì)能是從分析重力做功入手的,研究彈簧的彈性勢(shì)能則應(yīng)從彈簧的彈力做功入手。然而彈簧的彈力是一個(gè)變力,如何研究變力做功是本節(jié)的一個(gè)難點(diǎn),也是重點(diǎn)。首先,要引導(dǎo)學(xué)生通過類比重力做功和重力勢(shì)能的關(guān)系得出彈簧的彈力做功和彈簧的彈性勢(shì)能的關(guān)系。其次,通過合理的猜想與假設(shè)得出彈簧的彈力做功與哪些物理量有關(guān)。最后,類比勻變速直線運(yùn)動(dòng)求位移的方法,進(jìn)行知識(shí)遷移,利用微元法的思想得到彈簧彈力做功的表達(dá)式,逐步把微分和積分的思想滲透到學(xué)生的思維中。本節(jié)課通過游戲引入課題,通過生活中拉弓射箭、撐桿跳高和彈跳蛙等玩具以及各種彈簧等實(shí)例來創(chuàng)設(shè)情景,提出問題。給學(xué)生感性認(rèn)識(shí),引起學(xué)生的好奇心;讓學(xué)生對(duì)彈簧彈力做功的影響因素進(jìn)行猜想和假設(shè),提出合理的推測(cè),激發(fā)學(xué)生的探索心理,構(gòu)思實(shí)驗(yàn),為定性探究打下基礎(chǔ)。然后,引導(dǎo)學(xué)生通過類比重力做功與重力勢(shì)能的關(guān)系得出彈簧彈性勢(shì)能與彈簧彈力做功的關(guān)系。
說明:“倍增法”是一種重要的物理方法,歷史上庫侖在研究電荷間的相互作用力時(shí)曾用過此法,但學(xué)生在此前的物理學(xué)習(xí)中可能未曾遇到類似例子,因此引導(dǎo)學(xué)生通過交流,領(lǐng)會(huì)“倍增法”的妙處,這是本節(jié)課的一個(gè)要點(diǎn).可用體育鍛煉中的“拉力器”來類比。(2)該方案消除摩擦力影響的方法:所用的消除方法與實(shí)驗(yàn)方案2一樣。也可使用氣墊導(dǎo)軌代替木板,以更好地消除摩擦影響。(3)小車速度的確定方法:①確定打出來的點(diǎn)大致呈現(xiàn)什么規(guī)律:先密后疏(變加速),再均勻分布(勻速);②應(yīng)研究小車在哪個(gè)時(shí)刻的速度:在橡皮筋剛恢復(fù)原長時(shí)小車的瞬時(shí)速度,即紙帶上的點(diǎn)剛開始呈現(xiàn)均勻分布時(shí)的速度;③應(yīng)如何取紙帶上的點(diǎn)距以確定速度:由于實(shí)驗(yàn)器材和每次操作的分散性,尤其是橡皮筋不可能長度、粗細(xì)完全一致,使得每次改變橡皮筋的條數(shù)后,紙帶上反映小車勻速運(yùn)動(dòng)的點(diǎn)數(shù)和點(diǎn)的位置,不一定都在事先的設(shè)定點(diǎn)(即用一條橡皮筋拉小車,橡皮筋剛好恢復(fù)原長時(shí)紙帶上的點(diǎn))處。
知識(shí)與技能1.知道地心說和日心說的基本內(nèi)容.2.知道所有行星繞太陽運(yùn)動(dòng)的軌道都是橢圓,太陽處在橢圓的一個(gè)焦點(diǎn)上.3.知道所有行星的軌道的半長軸的三次方跟它的公轉(zhuǎn)周期的二次方的比值都相等,且這個(gè)比值與行星的質(zhì)量無關(guān),但與太陽的質(zhì)量有關(guān).4.理解人們對(duì)行星運(yùn)動(dòng)的認(rèn)識(shí)過程是漫長復(fù)雜的,真理是來之不易的.過程與方法通過托勒密、哥白尼、第谷·布拉赫、開普勒等幾位科學(xué)家對(duì)行星運(yùn)動(dòng)的不同認(rèn)識(shí),了解人類認(rèn)識(shí)事物本質(zhì)的曲折性并加深對(duì)行星運(yùn)動(dòng)的理解.情感、態(tài)度與價(jià)值觀1.澄清對(duì)天體運(yùn)動(dòng)裨秘、模糊的認(rèn)識(shí),掌握人類認(rèn)識(shí)自然規(guī)律的科學(xué)方法.2.感悟科學(xué)是人類進(jìn)步不竭的動(dòng)力.教學(xué)重點(diǎn)理解和掌握開普勒行星運(yùn)動(dòng)定律,認(rèn)識(shí)行星的運(yùn)動(dòng).學(xué)好本節(jié)有利于對(duì)宇宙中行星的運(yùn)動(dòng)規(guī)律的認(rèn)識(shí),掌握人類認(rèn)識(shí)自然規(guī)律的科學(xué)方法,并有利于對(duì)人造衛(wèi)星的學(xué)習(xí).
不可知論是否認(rèn)人們認(rèn)識(shí)世界或徹底改造世界的可能性的哲學(xué)學(xué)說。此概念首先由英國的赫胥黎(1825—1895)于1869年提出,不可知論的思想在古代就已產(chǎn)生,歐洲近代的主要代表是休謨和康德。其本質(zhì)是把人的感覺看作是主觀和客觀之間的屏障而不是橋梁,不承認(rèn)在感覺之外有確實(shí)可靠的客觀外部世界的存在,不懂得認(rèn)識(shí)過程中本質(zhì)與現(xiàn)象、有限與無限的辯證關(guān)系。對(duì)不可知論最有力的駁斥是實(shí)踐。有時(shí)不可知論一詞也用以專指針對(duì)宗教教義而提出的一種學(xué)說,認(rèn)為上帝是否存在、靈魂是否不朽是不可知的。2.二元論二元論是認(rèn)為世界有兩個(gè)本原的哲學(xué)學(xué)說,與一元論相對(duì)立,它把物質(zhì)和意識(shí)絕對(duì)對(duì)立起來,認(rèn)為物質(zhì)和意識(shí)是兩個(gè)各自獨(dú)立、相互平行發(fā)展著的實(shí)體,誰也不產(chǎn)生誰,誰也不決定誰,都是世界的本原。它的觀點(diǎn)是錯(cuò)誤的:它肯定精神不依賴于物質(zhì)而獨(dú)立存在,這本身就是唯心主義的觀點(diǎn);它雖然承認(rèn)物質(zhì)是獨(dú)立的本原,但在說明物質(zhì)和精神的關(guān)系時(shí),又把精神說成是唯一具有能動(dòng)性的力量,必然倒向唯心主義。主要代表人物是法國的笛卡兒和德國的康德。
教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會(huì)數(shù)形結(jié)合思想.教學(xué)重點(diǎn):特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點(diǎn):靈活應(yīng)用特殊角的三角函數(shù)值進(jìn)行計(jì)算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:
1、 如圖4-25,將一個(gè)圓分成三個(gè)大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫一個(gè)半徑是2cm的圓,并在其中畫一個(gè)圓心為60º的扇形,你會(huì)計(jì)算這個(gè)扇形的面積嗎?與同伴交流。教師對(duì)答案進(jìn)行匯總,講解本題解題思路:1、 因?yàn)橐粋€(gè)圓被分成了大小相同的扇形,所以每個(gè)扇形的圓心角相同,又因?yàn)閳A周角是360º,所以每個(gè)扇形的圓心角是360º÷3=120º,每個(gè)扇形的面積為整個(gè)圓的面積的三分之一。2、 先求出這個(gè)圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計(jì)意圖】運(yùn)用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識(shí)和能力,又達(dá)到了互幫互助以弱帶強(qiáng)的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。
(1)請(qǐng)你用代數(shù)式表示水渠的橫斷面面積;(2)計(jì)算當(dāng)a=3,b=1時(shí),水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a(bǔ)=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時(shí)水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時(shí)需搞清下列幾個(gè)問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個(gè)量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計(jì)教學(xué)過程中,應(yīng)通過活動(dòng)使學(xué)生感知代數(shù)式運(yùn)算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).
方法總結(jié):對(duì)等式進(jìn)行變形,必須在等式的兩邊同時(shí)進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點(diǎn)二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項(xiàng),可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時(shí),一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計(jì)教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.
教學(xué)目標(biāo)1、知識(shí)目標(biāo):掌握等式的性質(zhì);會(huì)運(yùn)用等式的性質(zhì)解簡(jiǎn)單的一元一次方程。2、能力目標(biāo):通過觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標(biāo):通過學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的意識(shí)和情感,敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,獲得成功的體驗(yàn),體會(huì)解決問題中與他人合作的重要性。教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解和應(yīng)用等式的性質(zhì)。難點(diǎn):應(yīng)用等式的性質(zhì),把簡(jiǎn)單的一元一次方程化為“x=a”的形式。教學(xué)時(shí)數(shù) 2課時(shí)(本節(jié)課是第一課時(shí))教學(xué)方法 多媒體教學(xué)教學(xué)過程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)
方法總結(jié):在分辨一個(gè)圖形是否為多邊形時(shí),一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對(duì)于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對(duì)照和分析,即可判定.探究點(diǎn)二:確定多邊形的對(duì)角線一個(gè)多邊形從一個(gè)頂點(diǎn)最多能引出2015條對(duì)角線,這個(gè)多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個(gè)多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個(gè)頂點(diǎn)可以畫出(n-3)條對(duì)角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個(gè)圓分割成三個(gè)扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個(gè)扇形圓心角的度數(shù).解析:用扇形圓心角所對(duì)應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個(gè)扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級(jí)共有600名學(xué)生,估計(jì)該年級(jí)在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計(jì)圖中C、D區(qū)所占的百分比,即可求出該年級(jí)在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計(jì)該年級(jí)在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個(gè)統(tǒng)計(jì)圖中獲取正確的信息,并互相補(bǔ)充互相利用.例如求被抽查的學(xué)生人數(shù)時(shí),由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對(duì)應(yīng)的是扇形統(tǒng)計(jì)圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學(xué)生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個(gè)籃球。一天課外活動(dòng),有3個(gè)班級(jí)分別計(jì)劃借籃球總數(shù)的 , 和 。請(qǐng)你算一算,這60個(gè)籃球夠借嗎?如果夠了,還多幾個(gè)籃球?如果不夠,還缺幾個(gè)?解:=60-30-20-15 =-5答:不夠借,還缺5個(gè)籃球。練習(xí)鞏固:第41頁1、2、7、探究活動(dòng) (1)如果2個(gè)數(shù)的積為負(fù)數(shù),那么這2個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?如果3個(gè)數(shù)的積為負(fù)數(shù),那么這3個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?4個(gè)數(shù)呢?5個(gè)數(shù)呢?6個(gè)數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡(jiǎn)便方法計(jì)算(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?本節(jié)課我們探討了有理數(shù)乘法的運(yùn)算律及其應(yīng)用.乘法的運(yùn)算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運(yùn)算中,靈活運(yùn)用運(yùn)算律可以簡(jiǎn)化運(yùn)算.(四)作業(yè):課本42頁作業(yè)題
解析:∵ab>0,根據(jù)“兩數(shù)相除,同號(hào)得正”可知,a、b同號(hào),又∵a+b<0,∴可以判斷a、b均為負(fù)數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點(diǎn)在于考查學(xué)生的邏輯推理能力.讓學(xué)生深刻理解除法是乘法的逆運(yùn)算,對(duì)學(xué)好本節(jié)內(nèi)容有比較好的作用.教學(xué)設(shè)計(jì)可以采用課本的引例作為探究除法法則的過程.讓學(xué)生自己探索并總結(jié)除法法則,同時(shí)也讓學(xué)生對(duì)比乘法法則和除法法則,加深印象.并講清楚除法的兩種運(yùn)算方法:(1)在除式的項(xiàng)和數(shù)字不復(fù)雜的情況下直接運(yùn)用除法法則求解.(2)在多個(gè)有理數(shù)進(jìn)行除法運(yùn)算,或者是乘、除混合運(yùn)算時(shí)應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運(yùn)算律解決問題.
1.掌握有理數(shù)混合運(yùn)算的順序,并能熟練地進(jìn)行有理數(shù)加、減、乘、除、乘方的混合運(yùn)算.2.在運(yùn)算過程中能合理地應(yīng)用運(yùn)算律簡(jiǎn)化運(yùn)算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運(yùn)算后,老師為了檢驗(yàn)同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計(jì)算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計(jì)算正確嗎?二、合作探究探究點(diǎn)一:有理數(shù)的混合運(yùn)算計(jì)算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運(yùn)算,運(yùn)算時(shí),一定要注意運(yùn)算順序,尤其是本題中的乘除運(yùn)算.要從左到右進(jìn)行計(jì)算;(2)題有大括號(hào)、中括號(hào),在運(yùn)算時(shí),可從里到外進(jìn)行.注意要靈活掌握運(yùn)算順序.
方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對(duì)稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對(duì)稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.三、板書設(shè)計(jì)1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過一段對(duì)話設(shè)置疑問,巧設(shè)懸念,激發(fā)起學(xué)生獲取知識(shí)的求知欲,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生由被動(dòng)接受知識(shí)轉(zhuǎn)為主動(dòng)學(xué)習(xí),從而提高學(xué)習(xí)效率.然后讓學(xué)生自主探究,在教學(xué)過程中充分發(fā)揮學(xué)生的主動(dòng)性,讓學(xué)生提出猜想.在教學(xué)中,教師通過必要的提示指明學(xué)生思考問題的方向,在學(xué)生提出驗(yàn)證三角形內(nèi)角和的不同方法時(shí),教師注意讓學(xué)生上臺(tái)演示自己的操作過程和說明自己的想法,這樣有助于學(xué)生接受三角形的內(nèi)角和是180°這一結(jié)論