4、鞏固新知,拓展新知(羊羊競技場)本環(huán)節(jié)在學(xué)生對性質(zhì)基本熟悉后安排了四組訓(xùn)練題,為避免學(xué)生應(yīng)用性質(zhì)的粗糙感,以小羊展開競技表演為背景,讓學(xué)生在輕松愉快的氛圍中層層遞進(jìn),不斷深入,達(dá)到強(qiáng)化性質(zhì),拓展性質(zhì)的目的。提高學(xué)生的辨別力;進(jìn)一步增強(qiáng)學(xué)生運(yùn)用性質(zhì)解決問題的能力;訓(xùn)練學(xué)生的逆向思維能力,增強(qiáng)學(xué)生應(yīng)變能力和解題靈活性.5、提煉小結(jié)完善結(jié)構(gòu)(羊羊總結(jié)會)“通過本節(jié)課的學(xué)習(xí),你在知識上有哪些收獲,你學(xué)到了哪些方法?”引導(dǎo)學(xué)生自主總結(jié)。設(shè)計(jì)意圖:使學(xué)生對本節(jié)課所學(xué)知識的結(jié)構(gòu)有一個清晰的認(rèn)識,能抓住重點(diǎn)進(jìn)行課后復(fù)習(xí)。以及通過對學(xué)習(xí)過程的反思,掌握學(xué)習(xí)與研究的方法,學(xué)會學(xué)習(xí),學(xué)會思考。6、課堂檢測,發(fā)展?jié)撃埽ù髴?zhàn)灰太狼)
(1)上午9時(shí)的溫度是多少?12時(shí)呢?(2)這一天的最高溫度是多少?是在幾時(shí)達(dá)到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經(jīng)過了多長時(shí)間?(4)在什么時(shí)間范圍內(nèi)溫度在上升?在什么時(shí)間范圍內(nèi)溫度在下降?(5)圖中的A點(diǎn)表示的是什么?B點(diǎn)呢?(6)你能預(yù)測次日凌晨1時(shí)的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關(guān)于駱駝的一些趣事嗎?例:它的體溫隨時(shí)間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當(dāng)體溫達(dá)到40℃時(shí),駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時(shí),駱駝的體溫達(dá)到最低點(diǎn).3、如下圖,是駱駝的體溫隨時(shí)間變化而變化的的關(guān)系圖,據(jù)圖回答下列問題:
一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學(xué)哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數(shù),一個是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙?jiān)剿涸叫。ù藭r(shí)該同學(xué)順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學(xué)們點(diǎn)頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數(shù),另一個是紙的大?。畮煟耗敲茨膫€量隨哪個量的變化而變化的呢?
《用尺規(guī)作三角形》是北師大版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書.數(shù)學(xué)》七年級下冊第五章第五節(jié)的內(nèi)容。在之前的學(xué)習(xí)中,我們已經(jīng)學(xué)會用尺規(guī)作線段和角,而邊和角是三角形的基本元素,這節(jié)課主要是學(xué)習(xí)利用尺規(guī)按要求做三角形,表面上看是操作的過程,但教科書中提出了有關(guān)探究性問題,目的是引導(dǎo)學(xué)生關(guān)注作圖背后的數(shù)學(xué)思考,即用尺規(guī)作三角形用到了兩個三角形全等的條件,因此本課教學(xué)應(yīng)引導(dǎo)學(xué)生積極思考,使學(xué)生體會到作圖的每一步驟都是有根 有 據(jù)的.二、教學(xué)目標(biāo)分析參照《課程標(biāo)準(zhǔn)》的要求及教材的特點(diǎn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征 ,我制定了如下教學(xué)目標(biāo):1、知識與技能:1.會用尺規(guī)按要求作三角形:已知三邊作三角形,已知兩角及夾邊作三角形,已知兩邊及夾角作三角形.2.會寫出三角形的已知、求作、作法. 3.能對新作三角形給出合理的解釋.
練習(xí)3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯(lián)系將所學(xué)知識升華,提升)練習(xí)4、動動腦。(讓學(xué)生進(jìn)一步感知生活中處處有數(shù)學(xué))(四)、暢談收獲、拓展升華1、本節(jié)課你學(xué)到了什么?依據(jù)是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結(jié))2、布置作業(yè):習(xí)題1.9知識技能1四、說課小結(jié)本堂課我主要采用引導(dǎo)探索法教學(xué),倡導(dǎo)學(xué)生自主學(xué)習(xí)、嘗試學(xué)習(xí)、探究學(xué)習(xí)、合作交流學(xué)習(xí),鼓勵學(xué)生用所學(xué)的知識解決身邊的問題,注重教學(xué)效果的有效性。學(xué)生在合作學(xué)習(xí)中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學(xué)習(xí)知識,有效地拓展學(xué)生思維,成功地培養(yǎng)學(xué)生的觀察能力、思維能力、合作探究能力、交流能力和數(shù)學(xué)學(xué)習(xí)能力。但由于本人對新課標(biāo)和新教材的理解不一定十分到位,所以在教材本身內(nèi)在規(guī)律的把握上,會存在一定的偏差;另外,由于對學(xué)生的認(rèn)知規(guī)律認(rèn)識不夠,所以教學(xué)活動的設(shè)計(jì)不一定十分有效。所有這些都有待教學(xué)實(shí)踐的檢驗(yàn)。
此題的設(shè)計(jì)目的:及時(shí)的練習(xí)一是起到鞏固新知識的目的,二是及時(shí)了解學(xué)生掌握新知識的情況,起到反饋的目的。這樣設(shè)計(jì)的依據(jù)是:小題多,是讓更多的學(xué)生參與到學(xué)習(xí)中來,及時(shí)給予他們更正,更多的是對他們的鼓勵和表揚(yáng),有簡單的題盡量讓基礎(chǔ)不太好的的學(xué)生去說,以讓他們感受到成功的樂趣;并且《新課標(biāo)》中指出課程內(nèi)容應(yīng)處于學(xué)生“最近發(fā)展區(qū)”的范圍以內(nèi),讓成功始終伴隨學(xué)生學(xué)習(xí)的旅程,以保證學(xué)生不會因過多的失敗而放棄他們的努力,失去發(fā)展的機(jī)會。第四環(huán)節(jié):師生合作,歸納總結(jié)。先由學(xué)生個人總結(jié),然后教師補(bǔ)充。設(shè)計(jì)目的:通過學(xué)生個人小結(jié),教師可以了解學(xué)生掌握知識的情況,培養(yǎng)學(xué)生總結(jié)概括的能力,教師補(bǔ)充起到完善所學(xué)知識的目的。第五環(huán)節(jié):布置作業(yè),鞏固提高。設(shè)計(jì)目的:因材施“作業(yè)”,分層次布置作業(yè),減輕學(xué)生的負(fù)擔(dān),全面推行素質(zhì)教育,讓學(xué)生學(xué)有用的數(shù)學(xué),不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)中得到不同的發(fā)展,以求彰顯學(xué)生的個性。
教學(xué)說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因?yàn)槿呴L度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實(shí)際生活中應(yīng)用的例子。要解決問題(3),只需要在四邊形中構(gòu)建出三角形結(jié)構(gòu),這樣就可以幫助其穩(wěn)定。設(shè)計(jì)意圖:通過學(xué)生動手操作,探究三角形穩(wěn)定性及生活中的應(yīng)用,讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活的辯證思想,感受數(shù)學(xué)美。 (五)總結(jié)反思,情意發(fā)展問題:通過這節(jié)課的學(xué)習(xí)你有什么收獲?多媒體演示:(1)知識方面:①三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時(shí)要注意公共邊的應(yīng)用。
經(jīng)過探究發(fā)現(xiàn)只有10與11出現(xiàn)的概率最大且相等(在探究的過程中提醒學(xué)生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數(shù)上多啟發(fā)和引導(dǎo),幫助學(xué)生順利突破難點(diǎn)。)及時(shí)表揚(yáng)答對的學(xué)生,因?yàn)檫@個問題整整過了三個世紀(jì),才被意大利著名的天文學(xué)家伽利略解決。后來法國數(shù)學(xué)家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進(jìn)一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結(jié):通過這節(jié)課的學(xué)習(xí),同學(xué)們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗(yàn)中有可能出現(xiàn)的結(jié)果是有限的。(2)、每一結(jié)果出現(xiàn)的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗(yàn)是否為等可能性事件。
(3)例題1的設(shè)計(jì),一方面是幫助學(xué)生從生實(shí)際問題背景中逐步建立古典概型的解題模式;另一方面也可進(jìn)一步理解古典概型的概念與特征,重點(diǎn)突破“等可能性”這個理解的難點(diǎn)。 采用學(xué)生分組討論的方式完。在整個活動中學(xué)生作為活動設(shè)計(jì)者、參與者.主持者;老師起到組織和指導(dǎo)的作用。為了讓學(xué)生進(jìn)一步認(rèn)識和理解隨機(jī)思想,認(rèn)識和理解概率的含義—概率是一種度量,是對隨機(jī)事件發(fā)生可能性大小的一種度量.讓學(xué)生觀察圖表,得出對稱的規(guī)律。預(yù)計(jì)學(xué)生在構(gòu)建等可能性事件模型時(shí)要花一些時(shí)間。(4)例題1的拓展設(shè)計(jì):看學(xué)生能否能在例1的基礎(chǔ)上利用類比的思想來建構(gòu)數(shù)學(xué)模型,并得出求事件 A包含的基本事件數(shù)常用的方法有樹狀圖法,枚舉法,圖表法,排列組合法等方法。適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進(jìn)一步的探究前輩們是如何從不考慮順序到想到考慮順序的
6、袋子里有8個紅球,m個白球,3個黑球,每個球除顏色外都相同,從中任意摸出一個球,若摸到紅球的可能性最大,則m的值不可能是( )A.1 B.3 C. 5 D.10活動目的:拓寬學(xué)生的思路,對本節(jié)知識進(jìn)行查缺補(bǔ)漏,并進(jìn)一步的鞏固加深,鼓勵學(xué)生大膽猜測,培養(yǎng)學(xué)生勤于動腦、勇于探究的精神. 注意事項(xiàng):對于第4題與第5題可適當(dāng)?shù)恼f出事件發(fā)生的可能性的大小,即概率的大小,為今后學(xué)習(xí)概率做鋪墊;對于第6題可根據(jù)回答情況講解.七、學(xué)習(xí)小結(jié):師生共同回顧新知探究的整個過程,互相交流總結(jié)本節(jié)的知識點(diǎn):(1)理解確定事件與不確定事件;(2)知道不確定事件發(fā)生的可能性有大有?。唬?)合理運(yùn)用所學(xué)知識分析解決相關(guān)問題.目的:鍛煉學(xué)生的口頭表達(dá)能力,體會學(xué)習(xí)的成果,感受成功的喜悅,增強(qiáng)學(xué)好數(shù)學(xué)的信心.(學(xué)生暢所欲言,教師給予鼓勵)
1.要創(chuàng)造性的使用教材,不拘泥于教材的形式。教材為學(xué)生的學(xué)習(xí)活動提供了基本線索,實(shí)施新課程目標(biāo)、實(shí)施教學(xué)的重要資源。在教學(xué)中要創(chuàng)造性地使用教材。本節(jié)課教師通過具體的現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn),讓學(xué)生體驗(yàn)到數(shù)學(xué)來源于生活,打破了傳統(tǒng)的注入式的教學(xué)模式,通過一系列精心設(shè)計(jì)把它改成學(xué)生所經(jīng)歷的情境引入課題,激發(fā)了學(xué)生的學(xué)習(xí)興趣。在教學(xué)中引導(dǎo)學(xué)生進(jìn)行“猜想一實(shí)驗(yàn)一分析一交流一發(fā)現(xiàn)一應(yīng)用”, 學(xué)生在操作、思考、交流中不斷地發(fā)現(xiàn)問題,解決問題,極大地調(diào)動了學(xué)生的學(xué)習(xí)的積極性,讓學(xué)生嘗到了成功的喜悅,激發(fā)了學(xué)生的發(fā)現(xiàn)思維的火花,經(jīng)歷了一番前人發(fā)現(xiàn)這個結(jié)果的“濃縮”過程,從而培養(yǎng)了學(xué)生獨(dú)立探究和解決問題的能力。2. 相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會通過課堂上小組合作擲硬幣試驗(yàn)、并展示試驗(yàn)結(jié)果的過程,為學(xué)生提供展示自己聰明才智的機(jī)會,并且在此過程中更利于教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解,以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。
4.已知一個三角形的兩邊長分別是4cm、7cm,則這個三角形的周長的取值范圍是什么?目的:主要是讓學(xué)生掌握三角形三邊的和差關(guān)系具體的應(yīng)用,并能應(yīng)用生活中實(shí)際問題。同學(xué)之間可以合作交流互相探討,發(fā)展學(xué)生空間觀念、推理能力,使學(xué)生善于觀察生活、樂于探索研究,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,從中適當(dāng)?shù)膶W(xué)生進(jìn)行德育教育,教育學(xué)生穿越馬路時(shí)間越長就越危險(xiǎn)。(五)課堂小結(jié)學(xué)生自我談收獲體會,說說學(xué)完本節(jié)課的困惑。教師做最終總結(jié)并指出注意事項(xiàng)。目的:讓學(xué)生暢所欲言,談收獲體會,教師給予鼓勵。主要是讓學(xué)生熟記新知能應(yīng)用新知解決問題,培養(yǎng)學(xué)生概括總結(jié)的能力、有條理的表達(dá)能力。注意事項(xiàng)為:判斷a,b,c三條線段能否組成一個三角形,應(yīng)注意:a+b>c,a+c>b,b+c>a三個條件缺一不可。當(dāng)a是a,b,c三條線段中最長的一條時(shí),只要b+c>a就是任意兩條線段的和大于第三邊。
1.能從統(tǒng)計(jì)圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點(diǎn))2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點(diǎn))一、情境導(dǎo)入某次射擊比賽,甲隊(duì)員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計(jì)圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計(jì)這10次射擊成績的平均數(shù),再具體算一算,看看你的估計(jì)水平如何.二、合作探究探究點(diǎn)一:從折線統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護(hù)局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計(jì)一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.
本節(jié)課開始時(shí),首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運(yùn)算。從而提出問題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過問題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時(shí)教案時(shí),著重從以下幾點(diǎn)考慮:1.先通過對實(shí)際問題的解決來引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
1.會用二次根式的四則運(yùn)算法則進(jìn)行簡單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負(fù)實(shí)數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
屬于此類問題一般有以下三種情況①具體數(shù)字,此時(shí)化簡的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當(dāng)題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時(shí),則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進(jìn)行化簡。
2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時(shí)彈簧長15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時(shí)彈簧的長度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.當(dāng)時(shí)間t等于多少分鐘時(shí),我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實(shí)際問題時(shí)從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式: ;2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進(jìn)而得到一次函數(shù)的表達(dá)式.
內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復(fù)習(xí)公理:兩點(diǎn)之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場景引入,提出問題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點(diǎn)連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實(shí)際問題的方法.