◆設(shè)計意圖:培養(yǎng)學(xué)生獨立思考、合作學(xué)習(xí)的能力。分別說明市場、交通、勞動力、機(jī)械和政策對農(nóng)業(yè)生產(chǎn)的影響,讓學(xué)生切實地考慮,拓展學(xué)生思路。教師激發(fā)和維持學(xué)生學(xué)習(xí)動機(jī)、引導(dǎo)學(xué)生、幫助學(xué)生自主發(fā)現(xiàn)、探索知識,達(dá)到鞏固所學(xué)知識,檢驗學(xué)生的實踐應(yīng)用能力。D.分析教材,識別圖片,理解農(nóng)業(yè)地域閱讀、分析教材,看圖識別,研究案例《澳大利亞地混合農(nóng)業(yè)生產(chǎn)》、思考問題、解決問題◆設(shè)計意圖:圖片展示能清楚直觀地說明問題,通過案例分析,了解澳大利亞的混合農(nóng)業(yè)生產(chǎn),培養(yǎng)學(xué)生獨立思考問題、解決問題的能力,開拓學(xué)生思路。3.課堂小結(jié):◆設(shè)計意圖:幫助學(xué)生回顧課堂、鞏固所學(xué)知識。4.反饋練習(xí):◆設(shè)計意圖:知識與能力強(qiáng)化訓(xùn)練,鞏固本課所學(xué)知識,提高應(yīng)用能力。
1.澳大利亞混合農(nóng)業(yè)地域在生產(chǎn)結(jié)構(gòu)、經(jīng)營方式、科技應(yīng)用、農(nóng)業(yè)專業(yè)化和地域化等方面有哪些特點?2.在澳大利亞混合農(nóng)業(yè)地 域形成的過程中,有哪些區(qū)位因素在起作用?學(xué)生發(fā)言,教師適當(dāng)引導(dǎo)、評點并作講解。[教師提問]:那么,澳大利亞的墨累—達(dá)令盆地的區(qū)位因素有什么不足之處?知識拓展:課件展示澳大利亞大分水嶺的雨影效應(yīng)的形成原理及東水西調(diào)示意圖。[教師講解]:澳大利亞東南部受大分水嶺的影響,降水集中于大分水嶺的東側(cè),在其西側(cè)形成山地的雨影效應(yīng),降水豐富地區(qū)與農(nóng)業(yè)生產(chǎn)地區(qū)分布不一致,灌溉成為澳大利亞農(nóng)牧業(yè)發(fā)展的限制性條件。因此,澳大利亞對水利工程建設(shè)很 重視,東水西調(diào)促進(jìn)了墨累—達(dá)令盆地農(nóng)牧業(yè)的發(fā)展。[課堂小結(jié)]:這節(jié)課我們學(xué)習(xí)了農(nóng)業(yè)區(qū)位選擇的基本原理。 通過學(xué)習(xí)我們了解到,農(nóng)業(yè)的區(qū)位選擇實質(zhì)上就是對農(nóng)業(yè)土地的合理利用。
案例探究:環(huán)地中海地區(qū)農(nóng)業(yè)的變遷讓學(xué)生思考:此地哪些因素發(fā)生了變化,農(nóng)業(yè)生產(chǎn)方式進(jìn)行了如何調(diào)整?效果如何?二、農(nóng)業(yè)地域的形成1、農(nóng)業(yè)地域的概念:由于以上各因素的共同影響,在一定的地域和一定的歷史條件下,形成了相應(yīng)的生產(chǎn)地區(qū),稱為農(nóng)業(yè)地域。農(nóng)業(yè)地域的類型主要有:種植業(yè)、畜牧業(yè)、混合農(nóng)業(yè)。(在這里分別給學(xué)生展示一些農(nóng)業(yè)生產(chǎn)類型的圖片,并簡單說明什么是種植業(yè)、什么是畜牧業(yè)、及什么是混合農(nóng)業(yè))案例探究:閱讀澳大利亞地混合農(nóng)業(yè)生產(chǎn)思考:(1)、澳大利亞農(nóng)業(yè)生產(chǎn)的特點是什么?(2)、澳大利亞混合農(nóng)業(yè)的分布在哪里?受哪些區(qū)位因素的影響?(3)澳大利亞混合農(nóng)業(yè)生產(chǎn)有哪些優(yōu)點?
一、教材分析在初中階段,物理量單位的學(xué)習(xí)是學(xué)生較為困惑的問題之一。前面關(guān)于1N的規(guī)定給學(xué)生的印象總好像是有些隨意。尤其是牛頓、帕斯卡、安培、伏特、焦耳、瓦特等單位的規(guī)定。使得學(xué)生感動物理太復(fù)雜。事實上,只有把單位制放在整個物理學(xué)框架中加以認(rèn)識,并且知識有了一定的積累。經(jīng)歷了充分的學(xué)習(xí)過程后才能體會物理量單位的命名和使用規(guī)則。體會到其中對一些單位進(jìn)行規(guī)定的合理性和方便特征。物理學(xué)單位中,有很少幾個基本物理量,它們的單位就是基本單位。在進(jìn)行了這種選定之后,其它物理量的單位就是根據(jù)它的定義式,有所選擇的其他物理量的單位共同確定的。國際單位制的建立和使用,不僅方便了國際間的交流,也逐漸成為科學(xué)研究中計算和運用的一種規(guī)范約束。中學(xué)生應(yīng)該注意學(xué)習(xí),逐步習(xí)慣,在記錄、表達(dá)和計算中規(guī)范使用。二、教學(xué)目標(biāo)(一)知識與技能1.了解什么是單位制,知道力學(xué)中的三個基本單位;2.認(rèn)識單位制在物理計算中的作用
一、教學(xué)目標(biāo)1、知識與技能(1)知道時間和時刻的含義以及它們的區(qū)別。知道在實驗室測量時間的方法。(2)知道位移的概念,知道它是表示質(zhì)點位置變動的物理量,知道它是矢量,可以用有向線段來表示。(3)知道位移和路程的區(qū)別。2、過程與方法(1)聯(lián)系生活實際,通過師生共同討論的方法來確定時刻與時間、位置、位移及其路程的關(guān)系。(2)通過類比的數(shù)學(xué)方法用數(shù)學(xué)上的點、線段來突破時刻與時間的關(guān)系,直線運動的位置和位移。(3)嘗試運用所學(xué)的概念判斷一些與生活相關(guān)的實際問題。3.情感態(tài)度與價值觀(1)通過本節(jié)課的學(xué)習(xí),使學(xué)生體會到物理現(xiàn)象和規(guī)律所蘊含的自然美。(2)通過對問題的討論,培養(yǎng)學(xué)生勇于探究與日常生活有關(guān)的物理學(xué)問題。(3)培養(yǎng)學(xué)生有主動與他人合作的團(tuán)隊精神,提高學(xué)生的科學(xué)素養(yǎng)。二、教學(xué)重點、難點重點:1、時間、時刻、位置、位移的概念。2、矢量與標(biāo)量的概念。
2、過程與方法(1)聯(lián)系生活實際,通過師生共同討論的方法來確定時刻與時間、位置、位移及其路程的關(guān)系。(2)通過類比的數(shù)學(xué)方法用數(shù)學(xué)上的點、線段來突破時刻與時間的關(guān)系,直線運動的位置和位移。(3)嘗試運用所學(xué)的概念判斷一些與生活相關(guān)的實際問題。3.情感態(tài)度與價值觀(1)通過本節(jié)課的學(xué)習(xí),使學(xué)生體會到物理現(xiàn)象和規(guī)律所蘊含的自然美。(2)通過對問題的討論,培養(yǎng)學(xué)生勇于探究與日常生活有關(guān)的物理學(xué)問題。(3)培養(yǎng)學(xué)生有主動與他人合作的團(tuán)隊精神,提高學(xué)生的科學(xué)素養(yǎng)。二、教學(xué)重點、難點重點:1、時間、時刻、位置、位移的概念。2、矢量與標(biāo)量的概念。難點:1、時刻與時間、路程和位移的區(qū)別。2、用坐標(biāo)表示時刻、時間、位移的方法。3、矢量與標(biāo)量的區(qū)別。
今天我說課的內(nèi)容是人教版高中物理必修1第四章第四節(jié)《力學(xué)單位制》,我的說課內(nèi)容將按下列程序展開。首先是本節(jié)教材的分析。一、說教材1、本節(jié)課在教材中的地位單位是學(xué)生在高考中最容易犯錯的地方之一,本節(jié)課內(nèi)容貫穿整個物理學(xué)科的每部分。學(xué)好這部分內(nèi)容對所有的自然學(xué)科都有幫助。2、教材簡析教材可分為:單位制等概念的來源和單位制的推廣。二、說教學(xué)目標(biāo):教學(xué)目標(biāo)的設(shè)定是教師進(jìn)行課堂授課的一個重要依據(jù),是教師完成教學(xué)任務(wù)的鑒定標(biāo)準(zhǔn)。根據(jù)新課標(biāo)要求和學(xué)生特點我對本節(jié)制定以下教學(xué)目標(biāo)(1)了解什么是單位制,知道國際單位制中力學(xué)的三個基本單位。(2)認(rèn)識單位制在物理學(xué)中和國際交往中的重要作用。(3)學(xué)會用單位運算來檢查物理公式推導(dǎo)的正確性,從而培養(yǎng)學(xué)生解決實際問題的能力。
研究一種物理現(xiàn)象,總是要先從現(xiàn)象的描述入手。機(jī)械運動作為自然界最簡單和最基本的運動形態(tài),它所描述的是物體空間位置隨時間變化的情況。因此,本節(jié)學(xué)習(xí)描述質(zhì)點做機(jī)械運動需要時刻、時間間隔和位移等概念。相當(dāng)一部分高一學(xué)生在具體過程中難以區(qū)別時刻和時間間隔。另外,由于思維的定式,在第一次接觸既要考慮大小又要考慮方向的問題時,會因不適應(yīng)造成學(xué)習(xí)困難。所以,區(qū)別“路程與位移”“時刻和時間間隔”是教學(xué)的重難點所在。學(xué)習(xí)這些內(nèi)容的過程與方法對學(xué)習(xí)速度和加速度可以起到奠定基礎(chǔ)的作用。教學(xué)的對象是高一的學(xué)生,這一時期的學(xué)生處在好奇善問、創(chuàng)新意識強(qiáng)烈的青少年期。對于生活中出現(xiàn)的各種現(xiàn)象具有濃厚的興趣。但他們的思維還停留在簡單的代數(shù)運算階段,對于矢量和矢量運算的理性認(rèn)識幾乎沒有。且對生活中出現(xiàn)的時間、時刻、時間間隔等不能做出很好的區(qū)分,對時常提及的路程、距離等形成了模糊的前概念。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
通過活動讓學(xué)生思考:回答問題。對學(xué)生的不同回答,只要合理,就給以認(rèn)可。設(shè)計意圖:讓學(xué)生學(xué)會有條理的表述自己的思考過程,理解三種數(shù)據(jù)都是刻畫了一組數(shù)據(jù)的平均水平。整個授課的過程中,由于問題的難點進(jìn)行了分解突破,問題的解決水到渠成。同時要學(xué)生意識到:學(xué)會用數(shù)據(jù)說話,科學(xué)地分析身邊的事例。5.歸納小結(jié),鞏固提高。(1)列表對比平均數(shù)眾數(shù)中位數(shù)概念注意點(2)在生活中可用平均數(shù)、眾數(shù)和中位數(shù)這三個特征數(shù)來描述一組數(shù)據(jù)的集中趨勢,它們各有不同的側(cè)重點,需聯(lián)系實際進(jìn)行選擇,對于同一份材料,同一組數(shù)據(jù),不同的目的,應(yīng)選擇不同的數(shù)據(jù)代表。因從不同的角度進(jìn)行分析時,看到的結(jié)果可能是截然不同的。作為信息的接受者,分析數(shù)據(jù)應(yīng)該從多角度對統(tǒng)計數(shù)據(jù)作出較全面的分析,從而避免機(jī)械的,片面的解釋。
設(shè)計意圖這一組習(xí)題的設(shè)計,讓每位學(xué)生都參與,通過學(xué)生的主動參與,讓每一位學(xué)生有“用武之地”,深刻體會本節(jié)課的重要內(nèi)容和思想方法,體驗學(xué)習(xí)數(shù)學(xué)的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導(dǎo)學(xué)生進(jìn)行課堂小結(jié),給出下列提綱,并就學(xué)生回答進(jìn)行點評。(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問題?(學(xué)生活動)學(xué)生發(fā)言,互相補(bǔ)充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習(xí)8.4.41、2題(2)實踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應(yīng)用。設(shè)計意圖通過讓學(xué)生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學(xué)生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學(xué)生完成基本學(xué)習(xí)任務(wù)的同時,在知識拓展時起激學(xué)生探究的熱情,讓每一個不同層次的學(xué)生都可以獲得成功的喜悅。
(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點 O;(2)過點O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點O;(2)過點O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點O在四邊形ABCD的一條邊上或在四邊形ABCD的一個頂點上時,作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時,要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點的對應(yīng)點.畫圖的方法大致有兩種:一是每對對應(yīng)點都在位似中心的同側(cè);二是每對對應(yīng)點都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點為位似中心時,畫圖最簡便.三、板書設(shè)計
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
三、作出速度-時間圖像(v-t圖像)1、確定運動規(guī)律最好辦法是作v-t圖像,這樣能更好地顯現(xiàn)物體的運動規(guī)律。2、x y x1 x2 y2 y1 0討論如何在本次實驗中描點、連線。(以時間t為橫軸,速度v為縱軸,建立坐標(biāo)系,選擇合適的標(biāo)度,把剛才所填表格中的各點在速度-時間坐標(biāo)系中描出。注意觀察和思考你所描畫的這些點的分布規(guī)律,你會發(fā)現(xiàn)這些點大致落在同一條直線上,所以不能用折線連接,而用一根直線連接,還要注意連線兩側(cè)的點數(shù)要大致相同。)3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認(rèn)為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當(dāng)中仍應(yīng)該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(biāo)(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標(biāo)系中,直線的斜率
3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認(rèn)為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當(dāng)中仍應(yīng)該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(biāo)(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標(biāo)系中,直線的斜率四、實踐與拓展例1、在探究小車速度隨時間變化規(guī)律的實驗中,得到一條記錄小車運動情況的紙帶,如圖所示。圖中A、B、C、D、E為相鄰的計數(shù)點,相鄰計數(shù)點的時間間隔為T=0.1s。⑴根據(jù)紙帶上的數(shù)據(jù),計算B、C、D各點的數(shù)據(jù),填入表中。
(三)合作交流能力提升教師:剛才我們通過實驗了解了小車的速度是怎樣隨時間變化的,但實驗中有一定的誤差,請同學(xué)們討論并說出可能存在哪些誤差,造成誤差的原因是什么?(每個實驗小組的同學(xué)之間進(jìn)行熱烈的討論)學(xué)生:測量出現(xiàn)誤差。因為點間距離太小,測量長度時容易產(chǎn)生誤差。教師:如何減小這個誤差呢?學(xué)生:如果測量較長的距離,誤差應(yīng)該小一些。教師:應(yīng)該采取什么辦法?學(xué)生:應(yīng)該取幾個點之間的距離作為一個測量長度。教師:好,這就是常用的取“計數(shù)點”的方法。我們應(yīng)該在紙帶上每隔幾個計時點取作一個計數(shù)點,進(jìn)行編號。分別標(biāo)為:0、1、2、3……,測各計數(shù)點到“0”的距離。以減小測量誤差。教師:還有補(bǔ)充嗎?學(xué)生1:我在坐標(biāo)系中描點畫的圖象只集中在坐標(biāo)原定附近,兩條圖象沒有明顯的分開。學(xué)生2:描出的幾個點不嚴(yán)格的分布在一條直線上,還能畫直線嗎?
甲方:地址: 法定代表人:乙方: 聯(lián)系地址: 身份證號: 鑒于乙方是具有完全民事行為能力的自然人,并具有歌唱、表演等方面的才藝和經(jīng)驗,甲方系依法注冊并合法存續(xù)的以文化藝術(shù)交流活動、展示展覽服務(wù)以及文化演出策劃等為營業(yè)范圍的公司,為各展其長,雙方在平等自愿、互惠互利的基礎(chǔ)上,達(dá)成以下網(wǎng)絡(luò)表演合作協(xié)議,以資共同遵守:一、合作事項和經(jīng)營收入1.1、甲方為乙方設(shè)立網(wǎng)絡(luò)視頻直播間賬號與后臺,為其指定網(wǎng)絡(luò)展示平臺由乙方通過視頻直播的方式向觀眾展示自己唱歌、主持、表演等方面的才藝,以獲取觀眾的支持和肯定;1.2、甲乙雙方合作經(jīng)營,以觀眾對乙方的肯定和支持為前提,由觀眾在觀看視頻過程中進(jìn)行禮物充值刷出禮物獲取收益。二、合作期限
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。