1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內(nèi)有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內(nèi)有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內(nèi)有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認(rèn)識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時,EF=OE=OF=1,當(dāng)∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
一、 問題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀(jì)錄和創(chuàng)紀(jì)錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問題.例如,就讀不同學(xué)校是否對學(xué)生的成績有影響,不同班級學(xué)生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風(fēng)險,等等,本節(jié)將要學(xué)習(xí)的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學(xué)生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問題.
《函數(shù)的單調(diào)性與最大(?。┲祡》系人教A版高中數(shù)學(xué)必修第一冊第三章第二節(jié)的內(nèi)容,本節(jié)包括函數(shù)的單調(diào)性的定義與判斷及其證明、函數(shù)最大(?。┲档那蠓āT诔踔袑W(xué)習(xí)函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性,這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的救開結(jié)合思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。
一、復(fù)習(xí)回顧、引入新課上節(jié)課,我們學(xué)習(xí)了《懷疑與學(xué)問》的內(nèi)容,也學(xué)習(xí)了議論文結(jié)構(gòu)的基本特征以及常用的論證方法,這節(jié)課我們重點學(xué)習(xí)議論文在論證論點過程中說理的層次,還要進(jìn)一步理解議論文分析事理透辟,語言嚴(yán)密的特點。二、教學(xué)新課目標(biāo)導(dǎo)學(xué)一:探究說理的層次,明確各段之間的關(guān)系請同學(xué)們細(xì)讀課文,邊讀邊思考句與句之間的關(guān)系,分組完成以下問題。1.本文論點是“治學(xué)必須有懷疑精神”,作者是如何闡述懷疑精神的?明確:對懷疑精神作者闡述得明確而透徹:所謂疑就是決不輕信,經(jīng)過思考,分清是非,再決定信與不信;進(jìn)而把懷疑科學(xué)地分為“懷疑”“思索”“辨別”三步。2.結(jié)合課文思考:作者是如何闡述“從懷疑到創(chuàng)新”這一治學(xué)過程的?明確:作者在進(jìn)一步論證“懷疑是建設(shè)新學(xué)說、啟迪新發(fā)明的基本條件”時,又把懷疑到創(chuàng)新的治學(xué)過程分析為“懷疑、辯論、評判、修正、創(chuàng)新”。作者通過舉例、正反說理,使內(nèi)容闡述得鞭辟入里,無懈可擊。
1.理解懷疑精神的內(nèi)涵及重要意義。2.整體感知課文內(nèi)容,梳理作者的論證思路,把握議論文嚴(yán)密的論證結(jié)構(gòu)?!窘虒W(xué)過程】一、故事激趣,導(dǎo)入新課師:同學(xué)們還記得七年級時咱們學(xué)過的一則寓言故事《穿井得一人》嗎?哪位同學(xué)能給大家再講講這個故事?預(yù)設(shè):從前宋國有一戶姓丁的人家,家中沒有水井,經(jīng)常有一個人在外面專管供水的事兒。后來他家里打了一口水井,他便高興地對別人說:“我家里打井得到了一個人?!庇腥寺牭搅怂脑?,就傳播說:“丁家打井挖出了一個人。”國都里的人都在談?wù)撨@件事,一直傳到了宋國國君那里。國君派人去問情況。丁家的人回答說:“是得到了一個人的勞力,并不是從井中挖出來一個人呀?!弊穯枺汗适轮校瑸槭裁磿[出這樣的笑話呢?(學(xué)生自由發(fā)言)預(yù)設(shè):傳播這件事的人,沒有弄清事情的真相,不辨真?zhèn)危杂瀭饔?,最終鬧出了笑話。
四、說學(xué)法當(dāng)今時代是一個信息爆炸的時代,現(xiàn)代教育面臨的嚴(yán)峻挑戰(zhàn)憶不僅是如何受使受教者學(xué)到知識,而且更重要的是使他們“學(xué)會學(xué)習(xí)”。正如埃德加、富爾所說:“未來的文盲,不再是不識字的人,而是沒有學(xué)會怎樣學(xué)習(xí)的人”。“授魚”不如“學(xué)漁”說的也是同樣的道理,因此如何教會學(xué)生正確的學(xué)習(xí)方法,使他們終身受益至關(guān)重要。鑒于此,本文學(xué)生學(xué)習(xí)采用批注法、討論法,讓學(xué)生主動參與,互相學(xué)習(xí),形成整體效應(yīng),通過競賽激發(fā)學(xué)習(xí)興趣,同時強調(diào)良好學(xué)習(xí)習(xí)慣的養(yǎng)成,提但養(yǎng)成使用工具書的習(xí)慣,提倡“不動筆墨不讀書”,讓學(xué)生養(yǎng)成圈點勾畫的讀書習(xí)慣。五、說教程本文我設(shè)計的教學(xué)程序是“搶答激趣—導(dǎo)學(xué)定標(biāo)—速讀感知—填圖導(dǎo)讀—競賽精讀—聯(lián)系生活—反饋檢測—知識遷移—歸納總結(jié)”。這一教學(xué)程序讓學(xué)生從感知教材、理解教材、鞏固知識到應(yīng)用知識,成螺旋型上升,符合科學(xué)的學(xué)習(xí)方法,符合循序漸進(jìn)原則。
四、范例學(xué)習(xí)、理解領(lǐng)會例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當(dāng)乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學(xué)生畫圖、 實驗、觀察、探索。五、隨堂練習(xí)課本隨堂練習(xí) 學(xué)生觀察、畫圖、合作交流。六、課堂總結(jié)本節(jié)課通過各種實踐活動,促進(jìn)大家對內(nèi)容的理解,本課內(nèi)容,要體會物體在太陽光下形成的不同影子,在操作中觀察不 同時刻影子的方向和大小變化特征。在同一時刻,物體的影子與它們的高度成比 例.
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
三、典型例題,應(yīng)用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍(lán)球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設(shè)計兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時應(yīng)注意什么?2. 你還有哪些收獲和疑惑?
五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測:檢測:晚上,小華在馬路的一側(cè)散步,對面有一路燈,當(dāng)小華筆直地往前走時,他在這盞路燈下的影子也隨之向前移動.小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁習(xí)題5.1八、板書設(shè)計投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個話題,接著經(jīng)歷實踐、探索的過程,掌握了中心投影的含義,進(jìn)一步根據(jù)燈光光線的特點,由實物與影子來確定路燈的位置,能畫出在同一時刻另一物體的影子,還要求大家不僅要自己動手實踐,還要和同伴互相交流.同時要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實踐操作能力,合作交流能力,語言表達(dá)能力.
3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
讓學(xué)生再用計算器計算,然后讓學(xué)生談?wù)動龅降膯栴}(計算器已經(jīng)不能把這些數(shù)顯示出來了)。最后讓學(xué)生根據(jù)上面的計算結(jié)果,找出規(guī)律,再直接寫出后四題的得數(shù),并組織學(xué)生交流,要求學(xué)生說說自己的思考過程及依據(jù),確認(rèn)發(fā)現(xiàn)的規(guī)律,讓學(xué)生進(jìn)一步體會計算器的作用:計算器還可以幫助我們探索規(guī)律。(設(shè)計意圖:設(shè)計不同層次的練習(xí),使學(xué)生體驗計算器的有用性,提高學(xué)生解決問題的能力,培養(yǎng)學(xué)生辨證思維能力)四、最后進(jìn)行全課總結(jié)。整個活動,老師創(chuàng)設(shè)情境,啟發(fā)誘導(dǎo),設(shè)疑激趣,學(xué)生自主探索,動手操作,積極思考,討論交流,給學(xué)生提供了充分的數(shù)學(xué)活動機會,充分發(fā)揮了學(xué)生的主體作用,使學(xué)生不僅掌握了知識,發(fā)展了能力,同時又體驗了數(shù)學(xué)問題的探索性與創(chuàng)造性,以及成功的喜悅,學(xué)生學(xué)得輕松,學(xué)得主動,學(xué)有創(chuàng)造,學(xué)有發(fā)展
活動內(nèi)容:教師首先讓學(xué)生回顧學(xué)過的三類事件,接著讓學(xué)生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認(rèn)為正面朝上和正面朝下的可能性相同嗎?(讓學(xué)生體驗數(shù)學(xué)來源于生活)。活動目的:使學(xué)生回顧學(xué)過的三類事件,并由擲硬幣游戲培養(yǎng)學(xué)生猜測游戲結(jié)果的能力,并從中初步體會猜測事件可能性。讓學(xué)生體會猜測結(jié)果,這是很重要的一步,我們所學(xué)到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。
這是本節(jié)課的重點。讓同學(xué)們將∠aob對折,再折出一個直角三角形(使第一條折痕為斜邊),然后展開,請同學(xué)們觀察并思考:后折疊的二條折痕的交點在什么地方?這兩條折痕與角的兩邊有什么位置關(guān)系?這兩條折痕在數(shù)量上有什么關(guān)系?這時有的同學(xué)會說:“角的平分線上的點到角的兩邊的距離相等”.即得到了角平分線的性質(zhì)定理的猜想。接著我會讓同學(xué)們理論證明,并轉(zhuǎn)化為符號語言,注意分清題設(shè)和結(jié)論。有的同學(xué)會用全等三角形的判定定理aas證明,從而證明了猜想得到了角平分線的性質(zhì)定理。
問題1:你能證明“兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a,b被直線c截出的內(nèi)錯角,且∠1=∠2.求證:a∥b. 問題2:你能證明“兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a、b被直線c截出的同旁內(nèi)角,且∠1與∠2互補.求證:a∥b
1、交流與發(fā)現(xiàn)為了了解本校學(xué)生暑假期間參加體育活動的情況,學(xué)校準(zhǔn)備抽取一部分學(xué)生進(jìn)行調(diào)查,你認(rèn)為按下面的調(diào)查方法取得的結(jié)果能反映全校學(xué)生的一般情況嗎?如果不能反映,應(yīng)當(dāng)如何改進(jìn)調(diào)查方法?方法1:調(diào)查學(xué)校田徑隊的30名同學(xué);方法2:調(diào)查每個班的男同學(xué);方法3:從每班抽取1名同學(xué)進(jìn)行調(diào)查;方法4:選取每個班級中的一半學(xué)生進(jìn)行調(diào)查.通過前面的活動,學(xué)生親身經(jīng)歷了一次數(shù)據(jù)的調(diào)查過程,并通過對所得數(shù)據(jù)的計算和分析,了解了自己在家干家務(wù)活的時間所處的位置和水平,在調(diào)查過程中體會到調(diào)查方便有效的重要性.接下來,就能很好地解決交流與發(fā)現(xiàn)中的問題.師生共同討論完成交流與發(fā)現(xiàn).
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。