提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

聘請法律顧問合同格式

  • 人教版高中政治選修3現代國家的結構形式教案

    人教版高中政治選修3現代國家的結構形式教案

    一、課程標準:1.2比較單一制與聯邦制的區(qū)別,理解國家形式既包括政權組織形式,又包括國家結構形式。 二、新課教學:現代國家的結構形式(一)、民族與國家1、民族與國家結構形式的關系(1)、國家結構形式①含義:如果說國家管理形式主要是指國家的立法、行政和司法機關之問的相互關系,那么,國家結構形式就是指國家的整體與部分、中央與地方之間的相互關系。補充:國家政權組制形式即政體與國家結構形式同屬國家形式,但是兩者有嚴格的區(qū)別:前者是指政權如何組織,后者是指中央與地方之間的相互關系。②民族是影響國家結構形式的因素之一影響國家結構形式的因素有很多,民族就是其中之一。(2)、民族①含義:民族是人類歷史上形成的有共同語言、共同地域、共同經濟生活、共同心理素質的穩(wěn)定的共同體。補充:民族是一種社會歷史現象,有其產生、發(fā)展和滅亡的過程。

  • 人教版高中地理必修2第五章第一節(jié)交通運輸方式和布局說課稿

    人教版高中地理必修2第五章第一節(jié)交通運輸方式和布局說課稿

    四、說教學過程:首先,導入學習。開門見山式導入人類的地域活動聯系,并設計提問在日常生活中,我們常用到的現代交通運輸方式有哪些?引出第一部分內容“主要交通運輸方式”的講解。通過導入,讓學生明確交通運輸的重要性,對交通運輸工具和方式有感性的認識,以便于下面教學內容的進行。其次,進入新課講授。由于學生們對五種交通運輸方式已經有感性的認識,因此在交通運輸方式的優(yōu)缺點方面的講解上,可以充分發(fā)揮學生的主觀能動性,通過自己閱讀課本的圖來學習五種主要交通運輸方式的優(yōu)缺點,以此培養(yǎng)學生的閱讀能力和自主學習能力。對于交通運輸方式的掌握,僅僅知道其優(yōu)缺點還是遠遠不夠的,要在此基礎上通過提問引導出影響交通運輸方式選擇的因素,并通過實例與學生共同分析,選擇出合適的交通運輸方式,得出要綜合考慮,本著“多、快、好、省”的原則,根據運輸對象的特點和運輸要求,選擇最佳運輸方式的結論。

  • 人教版高中地理必修2交通運輸方式和布局教案

    人教版高中地理必修2交通運輸方式和布局教案

    師承轉:交通運輸網中的線布局受各方面因素的影響,同樣交通運輸網中的點布局也受各方面因素的影響,請同學課后查找資料。分析廣州新的火車站選址番禺鐘村、新機場選址花都各方面的因素。屏幕顯示題目:請分析廣州新的火車站選址番禺鐘村、新機場選址花都的區(qū)位因素。課堂小結: 通過本堂課的學習,我們回憶了交通運輸方式的發(fā)展變化,得出其發(fā)展趨勢,并學習了現代幾種交通運輸方式的優(yōu)缺點,如何選擇合適的交通運輸方式。一個區(qū)域內其交通運輸網的形成歷程,正是這個區(qū)域經濟不斷發(fā)展的歷程。且學習了如何分析影響交通運輸網布局的區(qū)位因素,這些區(qū)位因素會隨時間的變化而發(fā)生變化。那么反過來,一個區(qū)域的交通布局發(fā)生變化后,會對該區(qū)域的經濟發(fā)展,及至區(qū)域內聚落的空間形態(tài)和整個商業(yè)中心的分布也會產生影響,這我們下節(jié)課再來分析。

  • 人教版新課標高中物理必修2探究彈性勢能的表達式說課稿4篇

    人教版新課標高中物理必修2探究彈性勢能的表達式說課稿4篇

    設疑自探:一個壓縮或拉伸的彈簧就是一個“儲能器”,怎樣衡量形變彈簧蘊含能量的多少呢?彈簧的彈性勢能的表達式可能與那幾個物理量有關?類比:物體的重力勢能與物體所受的重力和高度有關。那么彈簧的彈性勢能可能與所受彈力的大小和在彈力方向上的位置變化有關,而由F=kl知彈簧所受彈力等于彈簧的勁度系數與形變量的乘積。預測:彈簧的彈性勢能與彈簧的勁度系數和形變量有關。學生討論如何設計實驗: ①、用同一根彈簧在幾次被壓縮量不同時釋放(勁度系數相同,改變形變量),觀察小車被彈開的情況。②、分別用兩根彈簧在被壓縮量相同時釋放(形變量相同,勁度系數不同),觀察小車被彈開的情況。交流探究結果:彈性勢能隨彈簧形變量增大而增大。隨彈簧的勁度系數的增大而增大。

  • 人教版新課標高中物理必修2探究彈性勢能的表達式教案2篇

    人教版新課標高中物理必修2探究彈性勢能的表達式教案2篇

    “做功的過程就是能量轉化過程”,這是本章教學中的一條主線。對于一種勢能,就一定對應于相應的力做功。類比研究重力勢能是從分析重力做功入手的,研究彈簧的彈性勢能則應從彈簧的彈力做功入手。然而彈簧的彈力是一個變力,如何研究變力做功是本節(jié)的一個難點,也是重點。首先,要引導學生通過類比重力做功和重力勢能的關系得出彈簧的彈力做功和彈簧的彈性勢能的關系。其次,通過合理的猜想與假設得出彈簧的彈力做功與哪些物理量有關。最后,類比勻變速直線運動求位移的方法,進行知識遷移,利用微元法的思想得到彈簧彈力做功的表達式,逐步把微分和積分的思想滲透到學生的思維中。本節(jié)課通過游戲引入課題,通過生活中拉弓射箭、撐桿跳高和彈跳蛙等玩具以及各種彈簧等實例來創(chuàng)設情景,提出問題。給學生感性認識,引起學生的好奇心;讓學生對彈簧彈力做功的影響因素進行猜想和假設,提出合理的推測,激發(fā)學生的探索心理,構思實驗,為定性探究打下基礎。然后,引導學生通過類比重力做功與重力勢能的關系得出彈簧彈性勢能與彈簧彈力做功的關系。

  • 點到直線的距離公式教學設計人教A版高中數學選擇性必修第一冊

    點到直線的距離公式教學設計人教A版高中數學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點間的距離公式教學設計人教A版高中數學選擇性必修第一冊

    兩點間的距離公式教學設計人教A版高中數學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側有兩個大型小區(qū),現在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 人教版高中數學選擇性必修二等差數列的前n項和公式(1)教學設計

    人教版高中數學選擇性必修二等差數列的前n項和公式(1)教學設計

    高斯(Gauss,1777-1855),德國數學家,近代數學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數列:1,2,3,…,n,"… " 前100項的和問題.等差數列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數列{an} 是等差數列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數的奇偶進行分類討論.當n為偶數時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數數時, n-1為偶數

  • 人教版高中數學選擇性必修二等比數列的前n項和公式   (1) 教學設計

    人教版高中數學選擇性必修二等比數列的前n項和公式 (1) 教學設計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數的2倍,直到第64個格子.請給我足夠的麥粒以實現上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質量為40克,據查,2016--2017年度世界年度小麥產量約為7.5億噸,根據以上數據,判斷國王是否能實現他的諾言.問題1:每個格子里放的麥粒數可以構成一個數列,請判斷分析這個數列是否是等比數列?并寫出這個等比數列的通項公式.是等比數列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數學問題.

  • 人教版高中數學選擇性必修二等比數列的前n項和公式   (2) 教學設計

    人教版高中數學選擇性必修二等比數列的前n項和公式 (2) 教學設計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數列表示各正方形的面積,根據條件可知,這是一個等比數列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

  • 直線的點斜式方程教學設計人教A版高中數學選擇性必修第一冊

    直線的點斜式方程教學設計人教A版高中數學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線的兩點式方程教學設計人教A版高中數學選擇性必修第一冊

    直線的兩點式方程教學設計人教A版高中數學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學設計人教A版高中數學選擇性必修第一冊

    直線的一般式方程教學設計人教A版高中數學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數m的范圍;(2)若該直線的斜率k=1,求實數m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中數學選擇性必修二等差數列的前n項和公式(2)教學設計

    人教版高中數學選擇性必修二等差數列的前n項和公式(2)教學設計

    課前小測1.思考辨析(1)若Sn為等差數列{an}的前n項和,則數列Snn也是等差數列.( )(2)若a1>0,d<0,則等差數列中所有正項之和最大.( )(3)在等差數列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數為2n+1的等差數列中,所有奇數項的和為165,所有偶數項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數依次排成一列,構成數列{an} ,設數列{an} 的前n項和為S_n。

  • 人教版高中數學選修3二項式系數的性質教學設計

    人教版高中數學選修3二項式系數的性質教學設計

    1.對稱性與首末兩端“等距離”的兩個二項式系數相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數時,中間的一項C_n^(n/2)取得最大值;當n是奇數時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數之和為2^n1. 在(a+b)8的展開式中,二項式系數最大的項為 ,在(a+b)9的展開式中,二項式系數最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 北師大初中數學七年級上冊整式及其加減說課稿

    北師大初中數學七年級上冊整式及其加減說課稿

    ②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學生從正反兩方面雙向建構.突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學生體會到代數式存在的普遍性;讓學生給自己構造的一些簡單代數式賦予實際意義,進一步體會代數式的模型思想;通過“主題研究”等環(huán)節(jié)進一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學生在傾聽、質疑、說服、推廣的過程中得到“同化”和“順應”,直至豁然開朗,突破思維的瓶頸.2.生成預設為生成服務,本案編代數式、主題研究等環(huán)節(jié)的設計為學生精彩的生成提供了很好的平臺,在實際教學過程中,教師要注重生成信息的捕捉,善于發(fā)現學生思維的亮點,及時進行引導和激勵,并根據具體教學對象,適當調整教與學,使教學過程真正成為生成教育智慧和增強實踐能力的過程.讓預設與生成齊飛.

  • 北師大版初中八年級數學上冊二次根式說課稿

    北師大版初中八年級數學上冊二次根式說課稿

    有意義,字母x的取值必須滿足什么條件?設計意圖:通過例題的講解,使學生加深對所學知識的理解,避免一些常見錯誤。而變式練習設計,延續(xù)的例題的風格,一步一步,步步深入,本節(jié)課的教學難點就在學生的操作活動中迎刃而解了。對提高學生對所學知識的遷移能力和應用意識,激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運用,提高認識1、通過基礎訓練讓學生體驗學習的成就感。2、應用拓展:增加難處,再次讓學生聯系以前的知識,增強學生的數學應用意識。(六)、總結評價,質疑問難這節(jié)課我們學習了什么?設計意圖:學生共同總結,互相取長補短,學生在暢所欲言中對二次根式的認知得到進一步的鞏固升華。五、板書設計.采用綱領式的板書,使學生有“話”可說,有“理”可循,在簡單板書設計中使學生體會到數學的簡潔美。

  • 北師大版初中八年級數學上冊確定一次函數表達式說課稿

    北師大版初中八年級數學上冊確定一次函數表達式說課稿

    ③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據所給條件寫出簡單的一次函數表達式是本節(jié)課的重點加難點,所以在解決這一問題時及時引導學生總結學習體會,教給學生掌握“從特殊到一般”的認識規(guī)律中發(fā)現問題的方法。類比出一次函數關系式的一般式的求法,以此突破教學難點。在學習過程中,我巡視并予以個別指導,關注學生的個體發(fā)展。經學生分析:(1)當月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當x=1760時,y=0.05×(1760-1600)=8(元);(3)設此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學效果課前:通過本節(jié)課的學習,教學目標應該可以基本達成,學生能夠理解一次函數和正比例函數的概念,以及它們之間的關系,并能正確識別一次函數解析式,能根據所給條件寫出簡單的一次函數表達式,且通過本節(jié)課的學習學生的抽象思維能力,數學應用能力都能有所提升,

  • 北師大版初中數學八年級下冊不等式的解集說課稿2篇

    北師大版初中數學八年級下冊不等式的解集說課稿2篇

    說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數軸上表示出來:(1)x<2(2)x≥-2(設計意圖:例1是讓學生理解不等式的解與不等式的解集。聯系與區(qū)別,例2揭示不等式的解集與數軸上表示數的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數形結合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習:課本44頁練習2,3題5.歸納總結,結合板書,引導學生自我總結,重點知識和學習方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習題1,2題

  • 北師大版初中數學八年級下冊一元一次不等式組說課稿2篇

    北師大版初中數學八年級下冊一元一次不等式組說課稿2篇

    1.通過實例體會一元一次不等式組是研究量與量之間關系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會利用數軸解較簡單的一元一次不等式組。4.培養(yǎng)學生分析、解決實際問題的能力。5.通過實際問題的解決,體會數學知識在生活中的應用,激發(fā)學生的學習興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數學的價值。四、教學重、難點分析教學重點:1.理解有關不等式組的概念.2.會解由兩個一元一次不等式組成的不等式組.教學難點:在數軸上確定解集.五、教學手段分析本節(jié)課采用多媒體教學,利用多媒體教學信息容量大、操作簡單、形象生動、反饋及時等優(yōu)點,直觀地展示教學內容,這樣不但可以提高學習效率和質量,而且容易激發(fā)學生學習的興趣,調動積極性。

上一頁123...737475767778798081828384下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!