1.修訂各項(xiàng)安全管理制度,進(jìn)一步細(xì)化教職工安全工作具體要求,使制度更具科學(xué)性、時(shí)代性及人性化?! ?.完善安全責(zé)任書(shū)簽訂方式,在教職工進(jìn)一步明確職責(zé)的基礎(chǔ)上層層簽訂安全責(zé)任書(shū),真正將安全責(zé)任落實(shí)到每一個(gè)崗位上,并認(rèn)真履行職責(zé)?! ?.加強(qiáng)重點(diǎn)部位及重點(diǎn)人員操作的.安全檢查,采取定時(shí)和不定時(shí)的檢查,切實(shí)做到杜絕隱患,防范于未然,規(guī)范安全操作。
二、 工作重點(diǎn) 樹(shù)立學(xué)生的學(xué)習(xí)理想,明確人生價(jià)值;明確學(xué)習(xí)目的,面向全體,偏愛(ài)差生。嚴(yán)抓紀(jì)律,搞好班風(fēng)。建設(shè)以班風(fēng)促進(jìn)學(xué)風(fēng);做好控流工作,培養(yǎng)負(fù)責(zé)、肯干的班干部和學(xué)科帶頭人?! ∪?、教學(xué)目標(biāo) 堅(jiān)持規(guī)范學(xué)生的日常行為,積極開(kāi)展德育工作,有計(jì)劃有目的地結(jié)合學(xué)校的主題,開(kāi)展有特色的班務(wù)管理,現(xiàn)制定有目的如下:⑴加強(qiáng)學(xué)生前途理想教育,樹(shù)立明確的學(xué)習(xí)目標(biāo);⑵認(rèn)清責(zé)任,鞏固學(xué)生學(xué)習(xí)成績(jī),確立個(gè)人學(xué)期目標(biāo),以養(yǎng)成良好的行為習(xí)慣和學(xué)習(xí)習(xí)慣為基本要求;⑶加強(qiáng)師生溝通,了解學(xué)生的思想動(dòng)向及時(shí)排除并引導(dǎo)其向正確方向發(fā)展;⑷探討學(xué)習(xí)方法,培養(yǎng)良好的學(xué)習(xí)心態(tài);⑸量化目標(biāo):①能在校賽上取得2~3次成績(jī),②獲取8~10次文明班,1~2次文明課室。③能獲先進(jìn)班集體。
2.辯證的否定(1)辯證的否定是事物的自我否定。事物內(nèi)部存在著肯定方面和否定方面,它們既對(duì)立又統(tǒng)一。最初,肯定方面處于支配地位,否定方面處于被支配地位。在這種情況下,事物就被肯定著。但是,在矛盾雙方的斗爭(zhēng)中,否定方面總會(huì)由弱變強(qiáng)。一旦否定方面由被支配地位上升為支配地位,事物就轉(zhuǎn)化到了自己的對(duì)立面,實(shí)現(xiàn)了對(duì)事物的否定。事物最終之所以被否定,根源在于事物的內(nèi)部,是事物內(nèi)部的否定因素戰(zhàn)勝了肯定因素。因此,事物的否定是自我否定。(2)辯證的否定是事物發(fā)展的環(huán)節(jié)和聯(lián)系的環(huán)節(jié)。所謂發(fā)展,是指新事物的產(chǎn)生和舊事物的滅亡。而實(shí)現(xiàn)這一過(guò)程必須要對(duì)舊事物進(jìn)行否定,否定實(shí)現(xiàn)了事物由舊質(zhì)向新質(zhì)的飛躍。新事物在否定舊事物時(shí),并不是把舊事物全盤(pán)拋棄,一筆勾銷(xiāo)。舊事物是新事物的母體,新事物從舊事物那里脫胎而來(lái),新事物是在批判地繼承舊事物中的一切積極的有生命力的因素的基礎(chǔ)上發(fā)展起來(lái)的。這樣,在新舊事物之間就存在著必然的聯(lián)系。
在數(shù)學(xué)上,0這個(gè)數(shù)是解決記數(shù)和進(jìn)位問(wèn)題而引進(jìn)的概念,由于它不能表示實(shí)在的東西,很長(zhǎng)時(shí)間人們不把它看作是一個(gè)數(shù)。認(rèn)為0是無(wú),是對(duì)有的否定。從唯物辯證法的觀點(diǎn)看,這種否定不是形而上學(xué)的簡(jiǎn)單否定,而是具有豐富內(nèi)容的辨證否定。辨證的否定是發(fā)展的環(huán)節(jié)。0是從無(wú)到有的必經(jīng)之路,是連接無(wú)和有的橋梁。0又是正數(shù)和負(fù)數(shù)之間的界限,它既否定了任何正數(shù),也否定了任何負(fù)數(shù),是唯一的中性數(shù)。但它又是聯(lián)結(jié)正數(shù)和負(fù)數(shù)的中間環(huán)節(jié)。沒(méi)有0,負(fù)數(shù)就過(guò)渡不到正數(shù)去,正數(shù)也休想發(fā)展到負(fù)數(shù)來(lái)。數(shù)學(xué)中的0是對(duì)任何定量的否定。如果沒(méi)有這一否定,任何量的發(fā)展都無(wú)從談起。這個(gè)否定不是一筆勾銷(xiāo),而是揚(yáng)棄。因?yàn)樗朔巳魏味康挠邢扌?,成為其發(fā)展的環(huán)節(jié)。在現(xiàn)實(shí)生活中,0作為辨證的否定,也體現(xiàn)出聯(lián)系和發(fā)展的性質(zhì)。如0度不是沒(méi)有溫度,而是非常確定的溫度。
下面是對(duì)以高技術(shù)產(chǎn)業(yè)為主的新工業(yè)區(qū)的內(nèi)容進(jìn)行講解,教材以美國(guó)“硅谷”為例,首先談的是高技術(shù)工業(yè)的特點(diǎn),然后講述的是“硅谷”的發(fā)展條件,由于教學(xué)模式與意大利新工業(yè)區(qū)的內(nèi)容基本一致,這里就不再贅述了。接下來(lái)教材中提到的與之對(duì)照的案例同樣是以高技術(shù)產(chǎn)業(yè)而聞名的中關(guān)村,由于中關(guān)村在國(guó)內(nèi)的知名度較高,一般學(xué)生都有所了解,因此不妨讓學(xué)生談?wù)勛约旱目捶ǎ簩?duì)于高新技術(shù)產(chǎn)業(yè)的發(fā)展有何建議,相對(duì)于發(fā)展較為成功的“硅谷”我們需要學(xué)習(xí)的方面又是哪些?案例中最后一個(gè)問(wèn)題很值得深省,我國(guó)的新工業(yè)區(qū)到底怎樣做才能夠獲得成功,簡(jiǎn)單的模仿下我們?nèi)鄙俚挠质鞘裁??這個(gè)問(wèn)題可以作為拓展,讓學(xué)生寫(xiě)一篇簡(jiǎn)短的論文作為課后作業(yè)。最后做以簡(jiǎn)單的課堂小結(jié)。本節(jié)內(nèi)容的教學(xué)可能會(huì)相對(duì)繁雜,而案例之間的分析過(guò)程又過(guò)于雷同,所以難免枯燥。在處理這個(gè)問(wèn)題上,我將盡量做到詳略得當(dāng),主要培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。
1.通過(guò)對(duì)德國(guó)魯爾工業(yè)區(qū)、我國(guó)的遼中南工業(yè)區(qū)的案例分析和比較,讓學(xué)生理解傳統(tǒng)工業(yè)地域形成的主要區(qū)位條件和衰落的原因;2.結(jié)合魯爾工業(yè)區(qū)產(chǎn)生的環(huán)境污染等局面,理解工業(yè)生產(chǎn)活動(dòng)對(duì)地理環(huán)境的影響,并探討綜合整治的措施;3.通過(guò)對(duì)意大利中部和東北部工業(yè)區(qū)、美國(guó)“硅谷”的案例分析和比較,讓學(xué)生理解新工業(yè)地域形成的主要區(qū)位條件和衰落的原因;4.結(jié)合新工業(yè)地域和地理環(huán)境的關(guān)系,加深學(xué)生對(duì)工業(yè)生產(chǎn)活動(dòng)對(duì)地理環(huán)境的影響的理解?!窘虒W(xué)重、難點(diǎn)及解決辦法】重點(diǎn):分析工業(yè)區(qū)位因素,舉例說(shuō)明工業(yè)地域的形成條件與發(fā)展特點(diǎn)難點(diǎn):結(jié)合實(shí)例說(shuō)明工業(yè)生產(chǎn)活動(dòng)對(duì)地理環(huán)境的影響解決方法:比較歸納法 知識(shí)遷移應(yīng)用 案例分析法 自主學(xué)習(xí)與合作探究 【教學(xué)準(zhǔn)備】多媒體課件缺勤登記:
③在薩斯索羅地區(qū)集聚的相關(guān)企業(yè)和服務(wù)性機(jī)構(gòu)有哪些?④薩斯索羅瓷磚工業(yè)小區(qū)的生產(chǎn)—銷(xiāo)售—服務(wù)網(wǎng)絡(luò)中支撐企業(yè)、輔助性企業(yè)、服務(wù)性企業(yè)、服務(wù)性機(jī)構(gòu)有哪些?學(xué)生回答問(wèn)題后教師小結(jié):意大利的新工業(yè)區(qū),以中小企業(yè)集聚的工業(yè)小區(qū)為獨(dú)特的發(fā)展模式。工業(yè)小區(qū)的優(yōu)勢(shì)是有助于加強(qiáng)專(zhuān)業(yè)化,提高生產(chǎn)效率,降低生產(chǎn)成本,增強(qiáng)在市場(chǎng)上的競(jìng)爭(zhēng)力。完成課本70頁(yè)活動(dòng):1. 比較溫州鄉(xiāng)鎮(zhèn)企業(yè)與意大利新工業(yè)區(qū)的發(fā)展有什么異同(相同:有大批廉價(jià)勞動(dòng)力,企業(yè)規(guī)模小,以輕工業(yè)為主,企業(yè)生產(chǎn)高度專(zhuān)業(yè)化,資本集中程度低。不同:最大的不同是意大利工業(yè)小區(qū)密切聯(lián)系協(xié)作,共同形成巨型企業(yè),溫州雖生產(chǎn)同種產(chǎn)品,但是聯(lián)系協(xié)作不如意,形成多家企業(yè)競(jìng)爭(zhēng)局面,規(guī)模效應(yīng)大減。)2. 溫州鄉(xiāng)鎮(zhèn)企業(yè)的發(fā)展有哪些些問(wèn)題?你能為其解決這些問(wèn)題提出合理化的建議嗎?(加大技術(shù)投入,企業(yè)間聯(lián)系協(xié)作,杜絕惡性競(jìng)爭(zhēng)等)
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類(lèi)問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn)*鞏固知識(shí) 典型例題 例6 一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時(shí)后船行駛到B處,此時(shí)燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測(cè)量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長(zhǎng)度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長(zhǎng)度約為409m. 例8 三個(gè)力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長(zhǎng)線(xiàn)上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn)
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類(lèi)問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測(cè)量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長(zhǎng)度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長(zhǎng)度約為409m. 圖1-15 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個(gè)計(jì)數(shù)原理.大家知道: (1)如果完成一件事,有N類(lèi)方式.第一類(lèi)方式有k1種方法,第二類(lèi)方式有k2種方法,……,第n類(lèi)方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個(gè)步驟.完成第1個(gè)步驟有k1種方法,完成第2個(gè)步驟有k2種方法,……,完成第n個(gè)步驟有kn種方法,并且只有這n個(gè)步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個(gè)問(wèn)題: 在北京、重慶、上海3個(gè)民航站之間的直達(dá)航線(xiàn),需要準(zhǔn)備多少種不同的機(jī)票? 這個(gè)問(wèn)題就是從北京、重慶、上海3個(gè)民航站中,每次取出2個(gè)站,按照起點(diǎn)在前,終點(diǎn)在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點(diǎn),從3個(gè)民航站中任意選取1個(gè),有3種不同的方法;然后確定機(jī)票的終點(diǎn),從剩余的2個(gè)民航站中任意選取1個(gè),有2種不同的方法.根據(jù)分步計(jì)數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上海→北京,上海→重慶. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動(dòng)腦思考 探索新知 我們將被取的對(duì)象(如上面問(wèn)題中的民航站)叫做元素,上面的問(wèn)題就是:從3個(gè)不同元素中,任取2個(gè),按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個(gè)不同元素中,任取m (m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列,時(shí)叫做選排列,時(shí)叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題方法 20
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實(shí)驗(yàn)】 商店進(jìn)了一批蘋(píng)果,小王從中任意選取了10個(gè)蘋(píng)果,編上號(hào)并稱(chēng)出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋(píng)果編號(hào)12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計(jì)出這批蘋(píng)果的平均質(zhì)量及蘋(píng)果的大小是否均勻. 介紹 質(zhì)疑 講解 說(shuō)明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 在統(tǒng)計(jì)中,所研究對(duì)象的全體叫做總體,組成總體的每個(gè)對(duì)象叫做個(gè)體. 上面的實(shí)驗(yàn)中,這批蘋(píng)果的質(zhì)量是研究對(duì)象的總體,每個(gè)蘋(píng)果的質(zhì)量是研究的個(gè)體. 講解 說(shuō)明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績(jī),指出其中的總體與個(gè)體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績(jī)是總體,每一個(gè)學(xué)生的數(shù)學(xué)期末考試成績(jī)是個(gè)體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來(lái)衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個(gè)體. 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 觀察 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 35
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說(shuō)這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來(lái)檢測(cè)所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說(shuō)明了什么道理?
(設(shè)計(jì)意圖:讓學(xué)生充分表述自己的想法,強(qiáng)化學(xué)生的應(yīng)用意識(shí),培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力。從中發(fā)現(xiàn)可能性會(huì)隨著數(shù)量的變化而變化的。)(四)歸納總結(jié),完善認(rèn)知1、學(xué)生匯報(bào)學(xué)習(xí)所得。(使學(xué)生體驗(yàn)探索成功的喜悅)2、教師評(píng)價(jià)學(xué)習(xí)態(tài)度。(讓學(xué)生感受學(xué)習(xí)數(shù)學(xué)我能行)五、板書(shū)科學(xué)設(shè)計(jì)簡(jiǎn)單明了,重點(diǎn)突出,加深對(duì)所學(xué)知識(shí)的理解和掌握。通過(guò)以上創(chuàng)新處理,營(yíng)造寬松的學(xué)習(xí)氛圍,為學(xué)生創(chuàng)造聯(lián)想猜測(cè)、動(dòng)手操作、合作交流、自主探究、解決問(wèn)題的機(jī)會(huì),使學(xué)生在“自主——合作——探究”的學(xué)習(xí)過(guò)程中,體驗(yàn)數(shù)學(xué)探索成功的喜悅,體會(huì)到數(shù)學(xué)課堂充滿(mǎn)生命的活力。以上是我對(duì)本節(jié)課的一些設(shè)想,還有待于在實(shí)踐中去完善,如有不當(dāng)之處,敬請(qǐng)各位專(zhuān)家評(píng)委給予批評(píng)和指正。
二、教學(xué)目標(biāo)1、知識(shí)與技能:使學(xué)生經(jīng)歷探索加法交換律的過(guò)程,理解并掌握加法交換律,初步感知加法交換律的價(jià)值,發(fā)展應(yīng)用意識(shí)。2、數(shù)學(xué)思考:使學(xué)生在學(xué)習(xí)用符號(hào)、字母表示加法交換律的過(guò)程中,初步發(fā)展學(xué)生的符號(hào)感,逐步提高歸納、推理的抽象思維能力。3、解決問(wèn)題:運(yùn)用加法交換律的思想探索其他運(yùn)算中的交換律。4、情感與態(tài)度:使學(xué)生在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),進(jìn)一步增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣和信心,初步形成獨(dú)立思考和探究問(wèn)題的意識(shí)和習(xí)慣。三、教學(xué)重點(diǎn):理解并運(yùn)用加法交換律。四、教學(xué)難點(diǎn):在學(xué)生已有知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上引導(dǎo)學(xué)生歸納出加法交換律。五、教學(xué)關(guān)鍵:引導(dǎo)學(xué)生運(yùn)用各種不同的表達(dá)方法理解加法交換律的思想。六、教學(xué)過(guò)程(一)情境,形成問(wèn)題1、談話(huà):同學(xué)們喜歡運(yùn)動(dòng)嗎?你最喜歡哪項(xiàng)體育運(yùn)動(dòng)?李叔叔是一個(gè)自行車(chē)旅行愛(ài)好者,咱們一起去了解一下李叔叔的情況。1、出示李叔叔騎車(chē)旅行的情境圖。仔細(xì)觀察這幅圖,你從圖上知道哪些信息?
《函數(shù)的單調(diào)性與最大(?。┲祡》系人教A版高中數(shù)學(xué)必修第一冊(cè)第三章第二節(jié)的內(nèi)容,本節(jié)包括函數(shù)的單調(diào)性的定義與判斷及其證明、函數(shù)最大(?。┲档那蠓?。在初中學(xué)習(xí)函數(shù)時(shí),借助圖像的直觀性研究了一些函數(shù)的增減性,這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識(shí)是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識(shí)的延續(xù),它和后面的函數(shù)奇偶性,合稱(chēng)為函數(shù)的簡(jiǎn)單性質(zhì),是今后研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問(wèn)需用到函數(shù)的單調(diào)性;同時(shí)在這一節(jié)中利用函數(shù)圖象來(lái)研究函數(shù)性質(zhì)的救開(kāi)結(jié)合思想將貫穿于我們整個(gè)高中數(shù)學(xué)教學(xué)。
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見(jiàn)解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡(jiǎn)p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見(jiàn)解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識(shí)及解題技巧
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識(shí)儲(chǔ)備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來(lái)一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問(wèn)題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會(huì)判斷命題的充分條件、必要條件、充要條件.C.通過(guò)學(xué)習(xí),使學(xué)生明白對(duì)條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
《函數(shù)的單調(diào)性與最大(?。┲怠肥歉咧袛?shù)學(xué)新教材第一冊(cè)第三章第2節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了函數(shù)的概念、定義域、值域及表示法,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象,在此基礎(chǔ)上學(xué)生對(duì)增減性有一個(gè)初步的感性認(rèn)識(shí),所以本節(jié)課是學(xué)生數(shù)學(xué)思想的一次重要提高。函數(shù)單調(diào)性是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等內(nèi)容的基礎(chǔ),對(duì)進(jìn)一步研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,對(duì)解決各種數(shù)學(xué)問(wèn)題有著廣泛作用。課程目標(biāo)1、理解增函數(shù)、減函數(shù) 的概念及函數(shù)單調(diào)性的定義;2、會(huì)根據(jù)單調(diào)定義證明函數(shù)單調(diào)性;3、理解函數(shù)的最大(?。┲导捌鋷缀我饬x;4、學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì).數(shù)學(xué)學(xué)科素養(yǎng)
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫(huà)現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時(shí)等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡(jiǎn)單的問(wèn)題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大?。?3. 通過(guò)教學(xué)培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜測(cè)、樂(lè)于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類(lèi)比的思想有等式的基本性質(zhì)猜測(cè)不等式的基本性質(zhì)。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點(diǎn)與方程的解》,由于學(xué)生已經(jīng)學(xué)過(guò)一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點(diǎn)概念,進(jìn)一步理解零點(diǎn)判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點(diǎn)的概念;2、理 解函數(shù)零點(diǎn)與方程的根以及函數(shù)圖象與x軸交點(diǎn)的關(guān)系,掌握零點(diǎn)存在性定理的運(yùn)用;3、在認(rèn)識(shí)函數(shù)零點(diǎn)的過(guò)程中,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;b.邏輯推理:零點(diǎn)判定定理;c.數(shù)學(xué)運(yùn)算:運(yùn)用零點(diǎn)判定定理確定零點(diǎn)范圍;d.直觀想象:運(yùn)用圖形判定零點(diǎn);e.數(shù)學(xué)建模:運(yùn)用函數(shù)的觀點(diǎn)方程的根;