2學(xué)情分析本課內(nèi)容選用了苗族阿姐的背簍,黎族阿爸的魚籠,竹搖籃、簸箕等借助家庭中常見的竹器作為學(xué)習(xí)內(nèi)容,目的是要求學(xué)生用線描的方法對竹器的外形及竹編的篾紋進(jìn)行描繪,鍛煉學(xué)生對事物的觀察能力和表現(xiàn)能力。在此之前學(xué)生已經(jīng)學(xué)過了如何用線描的方式描繪生活中的小物件,這為過渡到本課內(nèi)容的學(xué)習(xí)起到了鋪墊作用,同時為后面的素描教學(xué)內(nèi)容打下造型基礎(chǔ)。
教學(xué)目標(biāo) 知識目標(biāo):通過欣賞大自然的圖片,感知大自然不同特點的美。 技能目標(biāo):能用自己喜歡的方式表達(dá)對不同自然美的感受。 情感態(tài)度與價值觀:培養(yǎng)學(xué)生熱愛大自然的情感,及愛護大自然的情感?! 〗虒W(xué)重點讓學(xué)生感受大自然不同的美,了解大自然的豐富,并能用簡單的語言表達(dá)自己的感受?! 〗虒W(xué)難點學(xué)習(xí)用審美的眼光去觀察大自然?! ≈饕谭▎l(fā)引導(dǎo)法、自學(xué)嘗試法 學(xué)習(xí)指導(dǎo)體驗探究法輔助指導(dǎo)法 教學(xué)資源教師:教材、課件?! W(xué)生:教材、自然風(fēng)光片 教學(xué)過程: 教學(xué)活動教學(xué)意圖 教師學(xué)生
2學(xué)情分析 新入學(xué)的學(xué)生第一次接觸正規(guī)化的美術(shù)課,對一年級學(xué)生來說是新 奇、有趣、好玩的,而且新生入學(xué)前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個性,但這些會造成學(xué)習(xí)的不一致性、習(xí)慣不統(tǒng)一化,給 美術(shù)課的課堂帶來不必要的麻煩。因此, 對待這些剛進(jìn)入課堂的小朋友, 我們在情感態(tài)度上要做出很大 的努力,小學(xué)生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機會, 激發(fā)孩子們對美術(shù)學(xué)習(xí)的興趣,讓孩子們能發(fā) 現(xiàn)美,有創(chuàng)造美的想法。
(三)精讀感悟1.獨立閱讀,自主探究。出示中心問題:這是一個---- 的小姑娘。?是從哪些地方看出來的?找出有關(guān)語句并體會著讀一讀。這一環(huán)節(jié)充分體現(xiàn)了學(xué)生“自主、合作、探究”的學(xué)習(xí)方式。教師為學(xué)生提供了寬廣的學(xué)習(xí)空間。學(xué)生圍繞中心問題,自己確定重點研究的內(nèi)容,自由選擇最適合自己的學(xué)習(xí)方式,在課文中攝取相關(guān)的語言信息。預(yù)設(shè)1這是一個勤勞的小姑娘,從第一小節(jié)看出。預(yù)設(shè)2這是一個善良的小姑娘,第二小節(jié)看出。引導(dǎo)學(xué)生找出相關(guān)的語句用自己的話說一說。設(shè)計意圖1用尊重學(xué)生獨特的見解和感受。讓學(xué)生去關(guān)心文本中的人物,鼓勵他們發(fā)表自己的想法,在品味中感受小姑娘的勤勞、善良故事表演情感升華2、學(xué)唱歌曲。幫助學(xué)生記憶課文。3、學(xué)完本課文后提問你最想說的一句話什么?你想對小姑娘說什么?達(dá)成情感目標(biāo)。(四)達(dá)標(biāo)測評(3)讀一讀,然后用“像”寫句話。1.她采的蘑菇最多,多得像那星星數(shù)不清。2.她采的蘑菇最大,大得像那小傘裝滿筐。
3、討論問題二:我國、我市人口增長對環(huán)境有那些影響?教師:讓第三、第四組學(xué)生分別介紹、展示課前調(diào)查到的資料,說明人口增長對我國環(huán)境的影響、對三亞市環(huán)境的影響。學(xué)生:第三組學(xué)生派代表介紹人口增長過快對我國生態(tài)環(huán)境的影響。第四小組由學(xué)生自己主持“我市人口增長過快對三亞市生態(tài)環(huán)境的影響”討論會,匯報課前調(diào)查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學(xué)生討論、補充和完善。學(xué)生:觀察老師投影圖片并進(jìn)行討論,對圖片問題進(jìn)行補充和完善。教學(xué)意圖:通過讓學(xué)生匯報、觀察、主持,能讓學(xué)生親身體驗,更深刻地理解人口增長對生態(tài)環(huán)境的影響,培養(yǎng)和提高學(xué)生的表達(dá)能力、觀察能力、主持會議的能力。4、討論問題三:怎樣協(xié)調(diào)人與環(huán)境的關(guān)系?教師:組織第五組學(xué)生進(jìn)行匯報課前調(diào)查到的資料,交流、討論、發(fā)表意見和見解。學(xué)生:展示課件、圖片,匯報調(diào)查到的情況,提出合理建議。
本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點近似值的步驟;3.數(shù)學(xué)運算:求函數(shù)零點近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計算機或信息技術(shù)工具計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內(nèi)的零點,從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;
⑤強調(diào)對外關(guān)系的靈活性。戈爾巴喬夫指出在對外政策中要采取多種辦法選擇不同的策略路線達(dá)到既定目標(biāo)。在外交談判中不要為自己制造死胡同,也不要給對方制造死胡同,要善于迎合伙伴,尋求接觸點。在這種思想指導(dǎo)下,蘇共采取的對外戰(zhàn)略是以軍控為中心的緩和戰(zhàn)略,具體政策是繼續(xù)與美國就裁軍、消減核武器、限制地區(qū)沖突等問題進(jìn)行談判,緩解蘇美關(guān)系;對西歐爭取建立“全歐大廈”;對東歐實行糾偏、不干涉政策;對中國改善關(guān)系,實現(xiàn)關(guān)系正?;徽{(diào)整與第三世界國家關(guān)系,解決阿富汗、柬埔寨等問題。 3、影響:①經(jīng)濟改革措施倉促上馬,缺少宏觀決策和相應(yīng)的配套措施;加上戈爾巴喬夫沒有放棄蘇聯(lián)的傳統(tǒng)做法,繼續(xù)優(yōu)先發(fā)展重工業(yè),致使改革未達(dá)到預(yù)期的效果,蘇聯(lián)經(jīng)濟持續(xù)下滑②經(jīng)濟體制改革受挫后,把改革的重點轉(zhuǎn)向政治領(lǐng)域,最終導(dǎo)致國內(nèi)局勢的失控和蘇聯(lián)的解體。
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時,所需進(jìn)化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當(dāng)每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
教法、學(xué)法分析我通過閱讀教材、教參和新課標(biāo),分析學(xué)生學(xué)習(xí)狀況,認(rèn)為對這一教學(xué)內(nèi)容理解起來比較容易。所以,在教學(xué)時我準(zhǔn)備采取以下策略:1、放手讓學(xué)生自主解決問題,嘗試計算例7的1、2題。再通過學(xué)生口述計算過程,教師設(shè)問、強調(diào)重點使學(xué)生掌握本節(jié)課知識。2、通過學(xué)生反復(fù)敘述算理,培養(yǎng)學(xué)生口頭表達(dá)能力,并使他們自主探索“被除數(shù)中間或末尾沒有0,商中間或末尾有0”這一知識形成的過程。教學(xué)目標(biāo)1、在熟練掌握一位數(shù)筆算除法法則的基礎(chǔ)上,會正確計算商中間或末尾有0的除法的另一種情況。2、能熟練地進(jìn)行商中間有零和末尾有零的除法,形成一定的筆算技能。3、能結(jié)合具體情境估算三位數(shù)除以一位數(shù)的商,增強估算的意識和能力。
二.說活動目標(biāo)《綱要》指出,發(fā)展幼兒語言的重要途徑是通過互相滲透的各個領(lǐng)域的教育,在豐富多彩的活動中擴展幼兒經(jīng)驗,提供促進(jìn)語言發(fā)展的條件,根據(jù)大班幼兒的內(nèi)容特點,我分別從認(rèn)知、能力、情感三方面制定了活動目標(biāo)。1.通過多媒體教學(xué),幫助幼兒理解詩歌內(nèi)容,懂得同伴間要友愛,激發(fā)熱愛綠色,保護向往綠色的情感。2.培養(yǎng)幼兒樂意欣賞不同體裁,不同風(fēng)格的文學(xué)作品的興趣,初步了解敘事詩。3.幼兒在感知作品的基礎(chǔ)上,初步體驗詩歌中綠色、灰色所代表的含義。重點:幫助幼兒理解詩歌內(nèi)容難點:初步體驗詩歌中綠色、灰色所代表的含義三.說活動準(zhǔn)備為了更好的完成本次活動目標(biāo),我準(zhǔn)備了以下材料1.制作與詩歌內(nèi)容相關(guān)的課件2.幼兒人手一面綠旗、灰旗3.詩歌表演的場地布置(森林、鳥窩、小溪、棕櫚葉)4.錄音機、磁帶、小紅花若干四.說活動過程根據(jù)大班幼兒年齡特點,我設(shè)計了以下5個環(huán)節(jié)1.整體欣賞詩歌《綠色的和灰色的》“今天老師給小朋友帶來了一首詩,你們想聽嗎?現(xiàn)在我們來聽一聽,看一看”(屏幕顯示詩歌內(nèi)容、圖像、配音)2.分段欣賞詩歌,理解詩歌情節(jié),初步體驗情感“詩歌里都說了些什么呢?讓我們一起來看一看。”(1)“小朋友你覺得這兒的環(huán)境怎么樣,心里有什么感覺?”(第一段)(2)讓幼兒感受狐貍的狡猾,小鳥的善良。(第二段)(3)讓幼兒體驗小兔的機智、聰明(第三、四段)(4)讓幼兒體驗狐貍的失望3.表演詩歌,加深理解,進(jìn)一步體驗情感(1)整體欣賞詩歌一遍“現(xiàn)在我們把詩歌再欣賞一次,如果你喜歡,可以輕輕地跟著說(2)讓幼兒分組表演詩歌“請你先和好朋友輕輕商量分配好角色,把小動物們說的話表演出來,看誰表演的最好(3)請表現(xiàn)突出的幼兒上臺表演4.遷移經(jīng)驗,玩游戲(1)討論:“小兔安全的經(jīng)過了草地,要想謝謝大家給它的幫助,那是誰幫助了它呢?”問“這么多的綠色幫助了小兔,你喜歡綠色嗎?”(2)玩游戲:看畫面,舉小旗5.在歌曲《綠色的家》中結(jié)束活動
【課件展示】《秦朝中央集權(quán)制度的建立》《教材簡析》《教學(xué)目標(biāo)》《教法簡介》《教學(xué)過程設(shè)計及特色簡述》【師】本節(jié)內(nèi)容以秦代政治體制和官僚系統(tǒng)的建立為核心內(nèi)容,主要包括秦朝中央集權(quán)制的建立的背景、建立過程及影響。本節(jié)內(nèi)容在整個單元中起到承前啟后的作用,在整個模塊中也有相當(dāng)重要的地位。讓學(xué)生了解中國古代中央集權(quán)政治體制的初建對于理解我國古代政治制度的發(fā)展乃至我們今天的政治體制是十分必要的。 本堂課我采用多媒體和講授法及歷史辯論法相結(jié)合,通過巧妙設(shè)計問題情境,調(diào)動學(xué)生的學(xué)習(xí)積極性,使學(xué)生主動學(xué)習(xí),探究思考。教師引導(dǎo)和組織學(xué)生采取小組討論、情景體驗等方式,達(dá)到教學(xué)目標(biāo)。 本節(jié)內(nèi)容分三個部分,下面首先看秦朝中央集權(quán)制度建立的前提即秦的統(tǒng)一
① 實驗設(shè)計將學(xué)生分組,利用桌上的器材進(jìn)行探究(幻燈片展示)這個實驗難度較大,為了降低難度,為實驗探究鋪下第二臺階,要求學(xué)生先分小組討論以下問題(幻燈片展示)有些學(xué)生可能不知如何下手,我會要求學(xué)生先閱讀課本中的實驗描述從中得到一點提示,再讓一兩個小組同學(xué)回答,這樣既體現(xiàn)了學(xué)生學(xué)習(xí)的主體性又可提高學(xué)生自主思考和語言表達(dá)能力,之后我再進(jìn)行補充完善(幻燈片展示答案),并用幻燈片把實驗步驟展示出來,在學(xué)生實驗過程一直保留,使學(xué)生能朝正確的方向進(jìn)行猜想和操作,為實驗探究鋪下第三個臺階。② 實施探究在學(xué)生分組進(jìn)行探究過程,教師巡視解惑,隨時觀察學(xué)生情況,解答學(xué)生提出的問題,還可用自言自語方式提示應(yīng)注意的一些問題,如儀器的正確使用,操作的規(guī)范等,幫助學(xué)生盡量在規(guī)定時間內(nèi)順利完成實驗。