1. 小明的腳長23.6厘米,鞋號應是 號。2.小亮的腳長25.1厘米,鞋號應是 號。3.小王選了25號鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結:剛才同學們都體會到了分組編碼使原來繁多,無敘的數(shù)據簡化、有序。因此分組、編碼是整理數(shù)據的一種重要的方法,在工商業(yè)、科研等活動中有廣泛的應用(四)反饋練習課內練習以下是某校七年級南,女生各10名右眼裸視的檢測結果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據是用什么方法獲得的?(2)學生右眼視力跟性別有關嗎?為了回答這個問題,你將怎樣處理這組數(shù)據?你的結論是什么?(五). 歸納小結,體味數(shù)學快樂通過本節(jié)課的學習,你有那些收獲?(課堂小結交給學生)數(shù)據收集的方法:直接觀察、測量、調查、實驗、查閱文獻資料、使用互連網等。整理數(shù)據的方法:分類、排序、分組編碼等。(學生可能還會指出鞋碼和腳長之間的關系等)
一、情境導入游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片《孩子,請不要私自下水》,并于觀看后在本校的2000名學生中作了抽樣調查.你能根據下面兩個不完整的統(tǒng)計圖回答以下問題嗎?(1)這次抽樣調查中,共調查了多少名學生?(2)補全兩個統(tǒng)計圖;(3)根據抽樣調查的結果,估算該校2000名學生中大約有多少人“一定會下河游泳”?二、合作探究探究點一:頻數(shù)直方圖的制作小紅家開了一個報亭,為了使每天進的某種報紙適量,小紅對這種報紙40天的銷售情況作了調查,這40天賣出這種報紙的份數(shù)如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數(shù)據分組,并繪制相應的頻數(shù)直方圖.解析:先找出這組數(shù)據的最大值和最小值,再以10為組距把數(shù)據分組,然后制作頻數(shù)直方圖.解:通過觀察這組數(shù)據的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數(shù)分布表:
方法總結:由絕對值的定義可知,一個數(shù)的絕對值越小,離原點越近.將實際問題轉化為數(shù)學問題,即為與標準質量的差的絕對值越小,越接近標準質量.【類型四】 絕對值的非負性已知|x-3|+|y-2|=0,求x+y的值.解析:一個數(shù)的絕對值總是大于或等于0,即為非負數(shù),若兩個非負數(shù)的和為0,則這兩個數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結:幾個非負數(shù)的和為0,則這幾個數(shù)都為0.三、板書設計絕對值相反數(shù)絕對值性質→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個數(shù)的絕對值相等兩個負數(shù)比較大小:絕對值大的反而小絕對值這個名詞既陌生,又是一個不易理解的數(shù)學術語,是本章的重點內容,同時也是一個難點內容.教材從幾何的角度給出絕對值的概念,也就是從數(shù)軸上表示數(shù)的點的位置出發(fā),得出定義的.
一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結果是:1千克土豆換0.5千克蘋果.當稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學的有關數(shù)學知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設土豆重a千克,籃子重b千克,則應換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結:體現(xiàn)了數(shù)學在生活中的運用.解決問題的關鍵是讀懂題意,找到所求的量之間的關系.三、板書設計數(shù)學教學要緊密聯(lián)系學生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學、練習等方式鞏固相關知識.教學中應激發(fā)學生主動參與學習的積極性,培養(yǎng)學生思維的靈活性.
本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學生的求知欲望,在學生已有的認識基礎上,讓學生經歷了“觀察、思考、探究、實踐”的過程。在總結出同類項定義后,沒有按通常的做法,即直接分析定義中的兩個條件,強調兩個條件缺一不可,而是通過一組練習,讓學生在具體問題中體會定義中的兩個條件缺一不可,使他們先有較強烈的感性認識,而后,分析定義中的兩個條件,這樣會給學生留下更深刻、更牢固的印象.這樣的設計既符合學生的年齡特征,也符合“從感性到理性、從具體到抽象”的認知規(guī)律。數(shù)學不應只強調抽象、嚴謹,這樣不但會更顯數(shù)學教學的枯燥,而且會使學生在學習中出現(xiàn)畏難情緒,甚至喪失學習數(shù)學的興趣。通過本節(jié)課的教學,我認為還存在一些不足,一部分學生的學習能力還有待于進一步培養(yǎng)。如:學習同類項的概念時,當把字母順序進行改變后,部分學生就認為不是同類項。
1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導入同學們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產流水線上生產如圖所示的工件,其中∠α稱為工件的中心角,生產要求∠α的標準角度為30°±1°,一名質檢員在檢驗時,手拿一量角器逐一測量∠α的度數(shù).請你運用所學的知識分析一下,該名質檢員采用的是哪種比較方法?你還能給該質檢員設計更好的質檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質檢中,采用疊合法比較快捷.
1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關系,并會進行簡單的換算.一、情境導入鐘表是我們生活中常見的物品,同學們,你能說出圖中每個鐘表時針與分針所成的角度嗎?學完了下面的內容,就會知道答案.二、合作探究探究點一:角的概念及其表示方法【類型一】 對角的概念的考查下列關于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點;④角可以看作由一條射線繞著它的端點旋轉而形成的圖形.A.1個 B.2個 C.3個 D.4個解析:①角是由有公共端點的兩條射線組成的圖形,錯誤;②角的大小與開口大小有關,角的邊是射線,沒有長短之分,錯誤;③角的邊是射線,不能延長,錯誤;④角可以看作由一條射線繞著它的端點旋轉而形成的圖形,說法正確.所以只有④正確.故選A.
方法總結:本題考查了利用數(shù)軸,比較數(shù)的大小關系,對于含有絕對值的式子的化簡,要根據絕對值內的式子的正負,去掉絕對值符號.探究點四:含括號的整式的化簡應用某商店有一種商品每件成本a元,原來按成本增加b元定出售價,售出40件后,由于庫存積壓,調整為按售價的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價與后60件的售價即可確定出總售價;(2)由“利潤=售價-成本”列出關系式即可得到結果.解:(1)根據題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價為(88a+88b)元;(2)根據題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結:解決此類題目的關鍵是熟記去括號法則和熟練運用合并同類項的法則.
4、 填表:相反數(shù) 絕對值21 0 -0.75 5、 畫一條數(shù)軸,在數(shù)軸上分別標出絕對值是6 , 1.2 , 0 的數(shù)6、 計算:(1) (2) 五、探究學習1、某人因工作需要租出租車從A站出發(fā),先向南行駛6 Km至B處,后向北行駛10 Km至 C處,接著又向南行駛7 Km至D處,最后又向北行駛2 Km至E處。請通過列式計算回答下列兩個問題:(1) 這個人乘車一共行駛了多少千米?(2) 這個人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米 ?2、寫出絕對值小于3的整數(shù),并把它們記在數(shù)軸上。六、小結一頭牛耕耘在一塊田 地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因為它所走過 的距離之和,有時候我們是無法 想象的。這就是今天所學的絕對值的意義所在。所以絕對值是不考慮方向意義時的一種數(shù)值表示。七、布置作業(yè)做作業(yè)本中相應的部分。
根據題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結:從扇形統(tǒng)計圖中獲取正確的信息是解題的關鍵.語文老師對班上學生的課外閱讀情況做了調查,并請數(shù)學老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數(shù)占全班人數(shù)的百分比.(4)用最喜歡某種書籍的人數(shù)比全班的總人數(shù)即可得各個百分比,所有的百分比之和為1.方法總結:由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.
解析:本題是要求兩個未知數(shù),即3和4的權.所以應把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結:利用平均數(shù)的公式解題時,要弄清數(shù)據及相應的權,避免出錯.三、板書設計平均數(shù)算術平均數(shù):x=1n(x1+x2+…+xn)加權平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術平均數(shù)和加權平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關平均數(shù)問題的解決,提升學生的數(shù)學應用能力.通過解決實際問題,體會數(shù)學與社會生活的密切聯(lián)系,了解數(shù)學的價值,增進學生對數(shù)學的理解和增加學好數(shù)學的信心.
本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內容通過學生的生活經驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.(三)強化知識間聯(lián)系,注意糾錯既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.
探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內無水).在這三個過程中,洗衣機內的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關系的圖象大致為()解析:∵洗衣機工作前洗衣機內無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結:本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設計函數(shù)定義:自變量、因變量、常量函數(shù)的關系式三種表示方法函數(shù)值函數(shù)的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數(shù)學活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數(shù)概念的理解.
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個3之間1的個數(shù)逐次加1).方法總結:有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個有理數(shù)都可以化為分數(shù)形式,而無理數(shù)則不能.探究點二:借助計算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計x的整數(shù)部分,看它在哪兩個連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
一、情境導入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術平方根的概念【類型一】 求一個數(shù)的算術平方根求下列各數(shù)的算術平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據算術平方根的定義求非負數(shù)的算術平方根,只要找到一個非負數(shù)的平方等于這個非負數(shù)即可.解:(1)∵82=64,∴64的算術平方根是8;(2)∵(32)2=94=214,∴214的算術平方根是32;(3)∵0.62=0.36,∴0.36的算術平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術平方根是3.方法總結:(1)求一個數(shù)的算術平方根時,首先要弄清是求哪個數(shù)的算術平方根,分清求81與81的算術平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負數(shù)的算術平方根常借助平方運算,因此熟記常用平方數(shù)對求一個數(shù)的算術平方根十分有用.
求證:直角三角形的兩個銳角互余.解析:分析這個命題的條件和結論,根據已知條件和結論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結:解此類題首先根據題意將文字語言變成符號語言,畫出圖形,最后再經過分析論證,并寫出證明的過程.三、板書設計命題分類公理:公認的真命題定理:經過證明的真命題證明:推理的過程經歷實際情境,初步體會公理化思想和方法,了解本教材所采用的公理,讓學生對真假命題有一個清楚的認識,從而進一步了解定理、公理的概念.培養(yǎng)學生的語言表達能力.
1.細講概念、強化訓練要想讓學生正確、牢固地樹立起算術平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經過分析、綜合去掉非本質特征,保持本質屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學,對提高學生的思維水平是很有必要的.概念教學過程中要做到:講清概念,加強訓練,逐步深化.“講清概念”就是通過具體實例揭露算術平方根的本質特征.算術平方根的本質特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術平方根也必須是正的.當然零的算術平方根是零.
第一環(huán)節(jié)感受生活中的情境,導入新課通過若干圖片,引導學生感受生活中常常需要確定位置.導入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y得出結論:在直線上, 確定一個點的位置一般需要一個數(shù)據.(2)啟新:在平面內,又如何確定一個點的位置呢?請同學們根據生活中確定位置的實例,請談談自己的看法.2.舉例探究Ⅰ. 探究1(1)在電影院內如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內,確定一個座位一般需要幾個數(shù)據?結論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學有所用(1) 你能用兩個數(shù)據表示你現(xiàn)在所坐的位置嗎?
第五環(huán)節(jié):課堂小結內容:師生相互交流總結解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程.解這個一元一次方程,便可得到一個未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程組的解.目的:鼓勵學生通過本節(jié)課的學習,談談自己的收獲與感受,加深對 “溫故而知新” 的體會,知道“學而時習之”.設計效果:學生能夠在課堂上暢所欲言,并通過自己的歸納總結,進一步鞏固了所學知識.第六環(huán)節(jié):布置作業(yè)課本習題5.2教學設計反思1.引入自然.二元一次方程組的解法是學習二元一次方程組的重要內容.教材通過上一小節(jié)的實際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.
在探究估算方法的時候,教師要注重適時的引導,以免讓學生無從下手.在教學過程中一定要讓學生體會估算的實用價值,了解到“數(shù)學既來源與生活,又回歸到生活為生活服務”.(二)課堂評價的一些思考在教學中要多鼓勵學生用自己的語言表達他們的想法,在估算的過程中多給予適當?shù)囊龑Ш驮u價,讓學生逐步把握估算的方法,找到解決問題的信心.比如對“畫能掛上去嗎”這個問題情境,學生可能提出不同的看法,有些學生可能認為可以掛上去,因為人還有身高,完全可以彌補梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學生可能認為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應該給予肯定,這樣才能激發(fā)學生思考問題的熱情,調動學生探究問題的積極性.作為教師,一定要尊重學生的個體差異,滿足多樣化的學習需要,鼓勵探究方式、表達方式和解題方法的多樣化.