教師活動:(1)組織學(xué)生回答相關(guān)結(jié)論,小組之間互相補充評價完善。教師進一步概括總結(jié)。(2)對學(xué)生的結(jié)論予以肯定并表揚優(yōu)秀的小組,對不理想的小組予以鼓勵。(3)多媒體投放板書二:超重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?大于物體所受到的重力的情況稱為超重現(xiàn)象。實質(zhì):加速度方向向上。失重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?小于物體所受到的重力的情況稱為失重現(xiàn)象。實質(zhì):加速度方向向下。(4)運用多媒體展示電梯中的現(xiàn)象,引導(dǎo)學(xué)生在感性認(rèn)識的基礎(chǔ)上進一步領(lǐng)會基本概念。4.實例應(yīng)用,結(jié)論拓展:教師活動:展示太空艙中宇航員的真實生活,引導(dǎo)學(xué)生應(yīng)用本節(jié)所學(xué)知識予以解答。學(xué)生活動:小組討論后形成共識。教師活動:(1)引導(dǎo)學(xué)生分小組回答相關(guān)問題,小組間互相完善補充,教師加以規(guī)范。(2)指定學(xué)生完成導(dǎo)學(xué)案中“思考與討論二”的兩個問題。
設(shè)計意圖:幾道例題及練習(xí)題,其中例1小車由靜止啟動開始行駛,以加速度 做勻加速運動,求2s后的速度大???進而變式到:小車遇到紅燈剎車……,充分體現(xiàn)了“從生活到物理,從物理到社會”的物理教學(xué)理念;例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在物理上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。(6) 小結(jié)歸納,拓展深化我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認(rèn)知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗是那個方面進行歸納,我設(shè)計了這么三個問題:① 通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;② 通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么;③ 通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)物理的方法?
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
3、討論問題二:我國、我市人口增長對環(huán)境有那些影響?教師:讓第三、第四組學(xué)生分別介紹、展示課前調(diào)查到的資料,說明人口增長對我國環(huán)境的影響、對三亞市環(huán)境的影響。學(xué)生:第三組學(xué)生派代表介紹人口增長過快對我國生態(tài)環(huán)境的影響。第四小組由學(xué)生自己主持“我市人口增長過快對三亞市生態(tài)環(huán)境的影響”討論會,匯報課前調(diào)查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學(xué)生討論、補充和完善。學(xué)生:觀察老師投影圖片并進行討論,對圖片問題進行補充和完善。教學(xué)意圖:通過讓學(xué)生匯報、觀察、主持,能讓學(xué)生親身體驗,更深刻地理解人口增長對生態(tài)環(huán)境的影響,培養(yǎng)和提高學(xué)生的表達能力、觀察能力、主持會議的能力。4、討論問題三:怎樣協(xié)調(diào)人與環(huán)境的關(guān)系?教師:組織第五組學(xué)生進行匯報課前調(diào)查到的資料,交流、討論、發(fā)表意見和見解。學(xué)生:展示課件、圖片,匯報調(diào)查到的情況,提出合理建議。
通過列表對比法、歸納法、、多媒體輔助法等教學(xué)方法,突破理論性強、不宜理解的“3S”原理與區(qū)別的知識難點。學(xué)生更是學(xué)會運用圖表方法、高效記憶法、合作學(xué)習(xí)法等方法學(xué)習(xí)地理知識,增加學(xué)習(xí)能力。[幻燈片] “3S技術(shù)”的應(yīng)用:地理信息技術(shù)的應(yīng)用十分廣泛,從實際身旁的社會生產(chǎn)生活,到地理學(xué)的區(qū)域地理環(huán)境研究。學(xué)生的年齡和認(rèn)知范圍決定,此部分的案例教學(xué)的運用,前者容易接觸到、簡單直觀、易區(qū)分掌握“3S”技術(shù)特點和具體應(yīng)用。而后者涉及地理學(xué)科的綜合性和區(qū)域性的特點,難度較大。針對學(xué)情特點,我多以前者案例入手學(xué)習(xí),以后者案例加以補充。案例:遙感:(1)視頻 專家解說衛(wèi)星遙感受災(zāi)影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號”衛(wèi)星提供汶川的災(zāi)區(qū)遙感圖像(4)教材 閱讀 遙感在農(nóng)業(yè)方面的應(yīng)用
1、《戰(zhàn)后資本主義世界經(jīng)濟體系的形成》是人教版高中歷史必修Ⅱ第八單元第22課,學(xué)時為1課時。《歷史必修Ⅱ》一書用古今貫通、中外關(guān)聯(lián)的八個專題來著重反映人類社會經(jīng)濟和社會生活領(lǐng)域發(fā)展進程中的重要史實。從第一單元勾勒“古代中國經(jīng)濟的基本結(jié)構(gòu)與特點”再到第八單元“世界經(jīng)濟的全球化趨勢”,以歷史唯物主義觀點清晰闡明經(jīng)濟全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史必然趨勢。第八單元的標(biāo)題是《世界經(jīng)濟的全球化趨勢》,作為最后一單元,從內(nèi)容上講,有強烈的時代感和現(xiàn)實意義,是全書內(nèi)容的總結(jié)與升華展望。提起“全球化”這個十年前才首次出現(xiàn)在美國《商業(yè)周刊》的新名詞,如今卻是地球人都知道了。然而究竟什么是全球化?作為一歷史現(xiàn)象,全球化有其自身內(nèi)部嚴(yán)密完整的體系,其中核心之一便是制度、規(guī)則的全球化,而這正是本課內(nèi)容的著力點。
【這部分的設(shè)計目的,要學(xué)生明白熱帶雨林只是一個案例,我們的目的是要合理開發(fā)和保護全世界的森林。由森林的開發(fā)與保護來明確區(qū)域發(fā)展過程中產(chǎn)生的環(huán)境問題,危害及治理保護措施?!咳缓笾R遷移——東北林區(qū)的開發(fā)與保護介紹東北地區(qū)的森林材料:東北林區(qū)是我國最大的天然林區(qū),主要分布于大、小興安嶺及長白山地,在平衡大氣成分、凈化空氣、補給土壤有機質(zhì)、涵養(yǎng)水源、保持水土、改善地方氣候有重要的作用。它還是我國最大的采伐基地,宜林地區(qū)廣,森林樹種豐富。 東北林區(qū)開發(fā)中的問題及影響點撥:由于人類的嚴(yán)重超采,采育脫節(jié),亂砍濫伐,毀林開荒,再加上森林火災(zāi),東北林區(qū)的面積在銳減,帶來了嚴(yán)重的生態(tài)惡化。我們該如何開發(fā)和保護東北地區(qū)的森林呢?
(3)師生討論,提升思維深度。教師引領(lǐng)學(xué)生將討論由農(nóng)業(yè)生態(tài)破壞、土地利用不合理等表象問題逐步深入到農(nóng)業(yè)結(jié)構(gòu)不合理、農(nóng)業(yè)技術(shù)落后等深層問題,提升了學(xué)生思維的深度。(4)角色體驗,突破難點落實重點。在農(nóng)民與保護區(qū)工作人員的角色體驗活動中,學(xué)生們嘗試換位思考,在沖突與交鋒中,在教師的引領(lǐng)下,重新認(rèn)識環(huán)境保護與區(qū)域經(jīng)濟發(fā)展的關(guān)系,在情感體驗中加深對可持續(xù)發(fā)展內(nèi)涵的理解,小沖突凸顯大矛盾是本課設(shè)計的創(chuàng)新之處。2.注重對地理問題的探究,突出地理學(xué)科本質(zhì)。地理學(xué)科具有綜合性、區(qū)域性特征,區(qū)域差異及人地和諧發(fā)展觀是我們在教學(xué)中應(yīng)該把握的基本特征,也是我們應(yīng)當(dāng)把握的地理學(xué)科的本質(zhì)特征,因此在本節(jié)課的設(shè)計中我注重抓住地理事物的空間特征、綜合性特征,以突出地理學(xué)科的本質(zhì)。
【教學(xué)目標(biāo)】知識與技能:了解我國不同等級城市的劃分,并理論聯(lián)系實際辨別現(xiàn)實社會的城市等級運用有關(guān)原理,說明不同等級城市服務(wù)范圍的差異。了解城市服務(wù)范圍與地理位置的關(guān)系。掌握不同等級城市的分布特點了解稱城市六邊形理論,并能用其解釋荷蘭圩田居民點設(shè)置問題過程與方法:通過對棗強鎮(zhèn)及上海城市等級演化分布的學(xué)習(xí),掌握不同等級城市城市服務(wù)范圍與功能以及城市等級提高的基本條件通過對德國城市分布案例的學(xué)習(xí),總結(jié)歸納出不同等級城市分布規(guī)律通過城市六邊形理論的學(xué)習(xí),學(xué)會分析城市居民點布局等現(xiàn)實問題情感態(tài)度與價值觀:通過學(xué)生對我國不同等級城市(經(jīng)濟、人口、交通、服務(wù)種類)等相關(guān)資料的搜集,讓學(xué)生關(guān)心我國基本地理國情,增強熱愛祖國的情感。養(yǎng)成求真、求實的科學(xué)態(tài)度,提高地理審美情趣。
在這段教學(xué)中可以插入世界主要鐵礦、煤礦,以及我國主要的礦產(chǎn)基地、鋼鐵生產(chǎn)基地的相關(guān)內(nèi)容,不失為區(qū)域地理知識的很好補充和鞏固。那么從現(xiàn)狀來看我國的鋼鐵產(chǎn)業(yè)基地多數(shù)污染較為嚴(yán)重,可見工業(yè)區(qū)位的選擇同樣要顧及到環(huán)境的因素,由此引入下一部分的內(nèi)容。除了傳統(tǒng)意義上的工業(yè)區(qū)位因素外,環(huán)境、政策以及決策者的理念和心理等日益受到人們的關(guān)注。在這段文字的處理上,只需進行概念、道理上的陳述即可,重點要放在污染工業(yè)在城市中的布局這一知識點上。首先要了解什么工業(yè)會造成怎樣的污染,然后根據(jù)污染的類別分別講解不同的應(yīng)對方略,最后將配以適當(dāng)?shù)睦}以期提高學(xué)生的整體把握程度和綜合運用能力。最后將對本節(jié)內(nèi)容進行小結(jié),要在小結(jié)中闡述清楚本節(jié)課的兩大內(nèi)容:即工業(yè)的區(qū)位因素和工業(yè)區(qū)位的選擇。然后點明本節(jié)課的主要知識點、難點、重點。在時間允許的情況下可以適當(dāng)安排幾道有關(guān)主導(dǎo)產(chǎn)業(yè)和城市工業(yè)布局的例題加以練習(xí)。
A.城鎮(zhèn)數(shù)量猛增B.城市規(guī)模不斷擴大【設(shè)計意圖】通過讀圖的對比分析,提高學(xué)生提取信息以及對比分析問題的能力,通過小組之間的討論,培養(yǎng)合作能力。五、課堂小結(jié)和布置作業(yè)關(guān)于課堂小結(jié),我打算讓學(xué)生自己來總結(jié),你這節(jié)課學(xué)到了什么。這樣既可以提高學(xué)生的總結(jié)概括能力,也可以讓我在第一時間內(nèi)獲得它們的學(xué)習(xí)反饋。(本節(jié)課主要學(xué)習(xí)了珠三角的位置和范圍以及改革開放以來珠三角地區(qū)工業(yè)化和城市化的發(fā)展。)關(guān)于作業(yè)的布置,我打算采用分層次布置作業(yè)法。第一個層次的作業(yè)是基礎(chǔ)作業(yè),要求每一位同學(xué)都掌握,第二個層次的作業(yè)是彈性作業(yè),學(xué)生可以根據(jù)自己的情況來選做。整個這堂課,老師只是作為一個引導(dǎo)者、組織者的角色,學(xué)生才是課堂上真正的主人,是自我意義的建構(gòu)者和知識的生成者,被動的、復(fù)制式的課堂將離我們遠(yuǎn)去。
由于這部分知識已要求學(xué)生在課前收集相關(guān)資料探討分析,,現(xiàn)在提供機會讓他們進行交流,充分發(fā)表各自的見解。所以,學(xué)生對這個知識掌握起來并不難。所以,我對這部分內(nèi)容不做太多的講解,只要做進一步的梳理,加深學(xué)生的理解即可。 第三是小結(jié)環(huán)節(jié) 在學(xué)生對西氣東輸工程的原因掌握之后進入的是小結(jié)環(huán)節(jié),這里我進一步提出問題:在西氣東輸工程段的建設(shè)中有沒有什么難關(guān)? 通過西氣東輸?shù)碾y度了解,間接的表現(xiàn)我國的科技的發(fā)展,增加學(xué)生的愛國情,同時也說明西氣東輸?shù)慕ǔ梢灿屑夹g(shù)這一原因。從而也完成了本課時的小結(jié)。 第四環(huán)節(jié)是作業(yè)布置 在這里要求學(xué)生課后預(yù)習(xí)本課剩下的內(nèi)容:思考西氣東輸對區(qū)域發(fā)展的影響以及為何要實施資源的跨區(qū)域調(diào)配。通過這樣的問題一方面為下節(jié)課學(xué)習(xí)奠定基礎(chǔ),另一方面體現(xiàn)本課學(xué)習(xí)從“個”到“類”從特殊到一般的過程。
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識及解題技巧
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點,教師補充。 讓學(xué)生掌握本節(jié)課知識點,并能夠靈活運用。
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實際問題;5.數(shù)學(xué)運算:能夠正確運用復(fù)數(shù)三角形式計算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識到數(shù)學(xué)知識的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復(fù)數(shù)呢?如何表示?
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠(yuǎn);相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。