對(duì)公民的要求:一方面,樹立權(quán)利意識(shí),珍惜公民權(quán)利。既要行使自己的權(quán)利,又要尊重他人的權(quán)利。另一方面,自覺履行公民義務(wù)。只有履行義務(wù),才能獲得相應(yīng)權(quán)利。(3)堅(jiān)持個(gè)人利益與集體利益、國(guó)家利益相結(jié)合原則三者利益關(guān)系:在我國(guó),公民的個(gè)人利益與集體利益、國(guó)家利益在根本上是一致的,國(guó)家利益、集體利益是個(gè)人利益的基礎(chǔ)和保障,公民正確行使權(quán)利和履行義務(wù),必須把三種利益結(jié)合起來(lái)。如何結(jié)合:積極履行公民義務(wù),維護(hù)國(guó)家利益。當(dāng)個(gè)人利益與國(guó)家利益產(chǎn)生矛盾時(shí),個(gè)人利益服從國(guó)家利益,這是公民愛國(guó)的表現(xiàn)。三、生活中的政治權(quán)利和義務(wù)教師活動(dòng):請(qǐng)同學(xué)們看教材第8頁(yè),思考圖中反映了我國(guó)公民行使了哪些政治權(quán)利,履行了哪些政治性義務(wù)?學(xué)生活動(dòng):閱讀課本,找出問題。
課前小測(cè)1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。
1、變換角度,多向思維(多向思維要求思維能針對(duì)問題,從不同角度,用多種方法去思考問題。對(duì)于作文而言,就是要使學(xué)生學(xué)會(huì)對(duì)同一問題,同一素材,同一題目,同一體裁的不同進(jìn)行區(qū)分。)請(qǐng)學(xué)生從這則材料中分析出幾個(gè)角度,準(zhǔn)備課堂交流:19世紀(jì)法國(guó)著名科幻小說(shuō)家儒勒?凡爾納,一生寫了104部科幻小說(shuō)。當(dāng)初他的第一部科幻小說(shuō)《氣球上的星期五》接連被15家出版社退回。他當(dāng)時(shí)既痛苦又氣憤,打算將稿子付之一炬。他妻子奪過書稿,給他以鼓勵(lì)。于是他嘗試著走進(jìn)第16家出版社。經(jīng)理赫哲爾閱讀后,當(dāng)即表示同意出版,還與儒勒?凡爾納簽訂了為期20年的寫作出版合同。這則材料敘述時(shí)沒有一定的中心,屬于開發(fā)性材料,分析材料中人物、人物關(guān)系、故事的不同側(cè)面,可以從不同角度得出結(jié)論:
★教后記:歷史教學(xué)的最高目標(biāo)不是單純的記憶和培養(yǎng)能力,而是樹立正確的歷史觀,培養(yǎng)學(xué)生的歷史責(zé)任感。從這一點(diǎn)講,新課標(biāo)及新課標(biāo)教材給老師極大的發(fā)揮空間,擺脫了以往的“教教材”,真正實(shí)現(xiàn)了 “用教材教”,只有這樣,教師才不只是一個(gè)“備課”的“教書匠”,而是一名設(shè)計(jì)教學(xué)“設(shè)計(jì)師”,以教材為磚瓦,建造有自己獨(dú)特風(fēng)格的教育大廈。這是我設(shè)計(jì)教學(xué)的出發(fā)點(diǎn)。開放式的課堂需要思想開放的教師,但對(duì)教師的課堂駕馭能力要求更高,否則“一放就活,一活就亂”,只求課堂熱鬧,熱鬧過后,學(xué)生一無(wú)所獲,那么這樣的開放課堂依然是失敗的。開放式的課堂并不是任由學(xué)生說(shuō),教師必要的引導(dǎo)與客觀的評(píng)價(jià)尤為重要?!飭栴}解答⊙【學(xué)思之窗】請(qǐng)談?wù)?,火車機(jī)車的不斷改進(jìn),給國(guó)民經(jīng)濟(jì)發(fā)展、百姓生活帶來(lái)怎樣的影響?答案提示:運(yùn)輸量大,有利于各地區(qū)的物資交流和勞動(dòng)力流動(dòng),促進(jìn)經(jīng)濟(jì)發(fā)展;交通便利快捷;機(jī)車內(nèi)部環(huán)境舒適,給百姓出行帶來(lái)方便。
●活動(dòng)與探究從葡萄牙、西班牙、荷蘭的興衰歷程,從英國(guó)的強(qiáng)盛歷程,我們從中可獲得什么啟示?啟示:積極發(fā)展本國(guó)的工商業(yè);實(shí)現(xiàn)制度創(chuàng)新;抓住機(jī)遇,及時(shí)更新觀念;建立能保障自身經(jīng)濟(jì)順利發(fā)展的國(guó)防力量,尤其是海軍力量;積極發(fā)展海外貿(mào)易,實(shí)行對(duì)外開放……★本課小結(jié)16世紀(jì)后期荷蘭積極向海外殖民擴(kuò)張,在17世紀(jì)建立了世界范圍內(nèi)的殖民帝國(guó);17世紀(jì)開始,英國(guó)也積極向海外殖民擴(kuò)張,并與荷蘭、法國(guó)進(jìn)行了激烈的爭(zhēng)奪,到18世紀(jì)中期,英國(guó)成為世界上最大的殖民國(guó)家,最終確立了世界殖民霸權(quán);新航路開辟后,伴隨著殖民擴(kuò)張,人類的商業(yè)活動(dòng)開始在全球范圍內(nèi)開展,人類的經(jīng)濟(jì)活動(dòng)由于世界市場(chǎng)的出現(xiàn)而第一次被廣泛地聯(lián)系在一起,而西歐國(guó)家對(duì)殖民地財(cái)富、資源、勞動(dòng)力的暴力掠奪,是歐洲發(fā)展和興旺的重要條件,也是亞、非、拉美災(zāi)難的根源。
六、學(xué)習(xí)效果評(píng)價(jià)設(shè)計(jì)1、評(píng)價(jià)方式:我對(duì)學(xué)習(xí)效果的評(píng)價(jià),來(lái)自兩個(gè)方面。一是教師的教授是否認(rèn)真、嚴(yán)肅、科學(xué);二是學(xué)生的學(xué)習(xí)成果如何,是否達(dá)成了事先預(yù)設(shè)的教學(xué)目標(biāo),是否在學(xué)習(xí)過程中有提高的過程。評(píng)價(jià)的方式有:同伴評(píng)價(jià);教師自我評(píng)價(jià)和反思;學(xué)生反饋。2、評(píng)價(jià)量規(guī):我設(shè)置了幾個(gè)問題用于課后的教學(xué)評(píng)價(jià):(1)教學(xué)目標(biāo)是否符合課標(biāo)要求,是否符合三貼近原則,是否體現(xiàn)學(xué)生學(xué)習(xí)效果的生成性和過程性。(2)學(xué)習(xí)所用資源是否來(lái)自生活實(shí)際,是否真實(shí),是否是學(xué)生感興趣的問題。(3)教師在課堂教學(xué)過程中是否能有效的通過提問和資料的展示分析,引導(dǎo)學(xué)生自己生成思考過程,而不是“教師代替學(xué)生的思考”。(4)學(xué)生參與的廣度和態(tài)度,學(xué)生是否提出有意義的觀點(diǎn)和問題。學(xué)生的回答是否是實(shí)話。
一、教材分析課程標(biāo)準(zhǔn)的基本要求:評(píng)價(jià)一項(xiàng)加強(qiáng)對(duì)政府權(quán)力進(jìn)行監(jiān)督的改革措施,說(shuō)明政府的權(quán)力不能濫用,行使權(quán)力要反映人民的利益和愿望。本標(biāo)準(zhǔn)要求學(xué)生認(rèn)識(shí)政府的權(quán)力不能濫用,認(rèn)識(shí)人民監(jiān)督政府對(duì)國(guó)家發(fā)展的重要性,形成正確的權(quán)力觀,培養(yǎng)積極參與民主監(jiān)督的政治素養(yǎng),體會(huì)我國(guó)接受人民監(jiān)督的重要意義。二、教學(xué)目標(biāo)1、知識(shí)目標(biāo):了解建立健全制約和監(jiān)督權(quán)力的機(jī)制;認(rèn)識(shí)我國(guó)的行政監(jiān)督體系;了解“陽(yáng)光工程”及其意義。2、能力目標(biāo):學(xué)會(huì)辨證地觀察問題、認(rèn)識(shí)問題。例如,要用一分為二的觀點(diǎn)看待權(quán)力,正確運(yùn)用權(quán)力可以造福社會(huì),濫用權(quán)力可能滋生腐敗。提高歸納與分析的能力。例如,歸納監(jiān)督政府權(quán)力的若干途徑。分析政府接受民主監(jiān)督的重要意義,分析建立健全權(quán)力監(jiān)督機(jī)制的內(nèi)涵等。
二、典例解析例4. 用 10 000元購(gòu)買某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬(wàn)元的設(shè)備,隨著設(shè)備在使用過程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過一年其價(jià)值會(huì)減少d(d為正常數(shù))萬(wàn)元.已知這臺(tái)設(shè)備的使用年限為10年,超過10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬(wàn)元;10年后,該設(shè)備的價(jià)值需小于11萬(wàn)元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬(wàn)元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于所有正方形的面積和
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
(二)說(shuō)學(xué)法指導(dǎo)把“學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生”,倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式,因而,我在教學(xué)過程中特別重視創(chuàng)造學(xué)生自主參與,合作交流的機(jī)會(huì),充分利用學(xué)生已獲得的生活體驗(yàn),通過相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學(xué)生主動(dòng)參與,積極思考,分析現(xiàn)象背后的哲學(xué)理論依據(jù),幫助學(xué)生樹立批判精神和創(chuàng)新意識(shí),從而增強(qiáng)教學(xué)效果,讓學(xué)生在自己思維的活躍中領(lǐng)會(huì)本節(jié)課的重點(diǎn)難點(diǎn)。(三)說(shuō)教學(xué)手段:我運(yùn)用多媒體輔助教學(xué),展示富有感染力的各種現(xiàn)象和場(chǎng)景,營(yíng)造一個(gè)形象生動(dòng)的課堂氣氛。三、說(shuō)教學(xué)過程教學(xué)過程堅(jiān)持"情境探究法",分為"導(dǎo)入新課——推進(jìn)新課——走進(jìn)生活"三個(gè)層次,環(huán)環(huán)相扣,逐步推進(jìn),幫助學(xué)生完成由感性認(rèn)識(shí)到理性認(rèn)識(shí)的飛躍。下面我重點(diǎn)簡(jiǎn)述一下對(duì)教學(xué)過程的設(shè)計(jì)。
一、教材分析(一)說(shuō)本框題的地位與作用《樹立創(chuàng)新意識(shí)是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實(shí)質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識(shí)》的重點(diǎn)和核心之一。學(xué)好這部分的知識(shí)對(duì)于學(xué)生進(jìn)一步理解辯證法的思維方法,樹立創(chuàng)新意識(shí)起著重要的作用。(二)說(shuō)教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識(shí)目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識(shí)和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識(shí)的關(guān)系,分析辯證否定的實(shí)質(zhì)是"揚(yáng)棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識(shí)息息相關(guān)。
學(xué)生借助對(duì)對(duì)聯(lián)的賞析,回味杜甫窮年漂泊的一生,體會(huì)杜甫作為一個(gè)深受儒家思想影響的讀書人,忠君念闕,心系蒼生的偉大情懷。(這一設(shè)計(jì)理念源于孟子所云:“誦其文,讀其詩(shī),不知其人,可乎?是以論其世也?!敝苏撌朗氰b賞詩(shī)歌的第一步 )(二)研讀課文1、初讀,朗讀吟誦,感知韻律美。要求學(xué)生讀準(zhǔn)字音,讀懂句意,體會(huì)律詩(shī)的節(jié)奏、押韻的順暢之美。2、再讀,披詞入情,感受感情美。讓學(xué)生用一個(gè)字概括這首詩(shī)的情感內(nèi)容。(此教學(xué)設(shè)計(jì)是從新課標(biāo)要求的文學(xué)作品應(yīng)先整體感知,培養(yǎng)學(xué)生歸納推理的邏輯思維能力出發(fā)進(jìn)行的設(shè)計(jì)。)其答案是一個(gè)“悲”字,由此輻射出兩個(gè)問題:詩(shī)人因何而“悲”?如何寫“悲”?(此問題設(shè)計(jì)順勢(shì)而出,目的在于培養(yǎng)學(xué)生探究問題的能力。)
學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運(yùn)算性質(zhì),有了這些知識(shí)作儲(chǔ)備,教科書通過利用指數(shù)運(yùn)算性質(zhì),推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),再學(xué)習(xí)利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值。課程目標(biāo)1、通過具體實(shí)例引入,推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì);2、熟練掌握對(duì)數(shù)的運(yùn)算性質(zhì),學(xué)會(huì)化簡(jiǎn),計(jì)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的運(yùn)算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運(yùn)算:對(duì)數(shù)運(yùn)算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實(shí)際情景中,模仿學(xué)過的數(shù)學(xué)建模過程解決問題.重點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),換底公式,對(duì)數(shù)恒等式及其應(yīng)用;難點(diǎn):正確使用對(duì)數(shù)的運(yùn)算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對(duì)數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個(gè)實(shí)例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對(duì)應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會(huì)求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個(gè)實(shí)例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運(yùn)算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運(yùn)用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實(shí)際問題中抽象概括出函數(shù)概念的活動(dòng),培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點(diǎn):函數(shù)的概念,函數(shù)的三要素。難點(diǎn):函數(shù)概念及符號(hào)y=f(x)的理解。