情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
(六)說教學(xué)策略1.專題性海量的媒介信息必須加以選擇或者整合,以項(xiàng)目為依據(jù),進(jìn)行信息篩選,形成專題性閱讀與交流;培養(yǎng)學(xué)生對(duì)文本信息“化零為整”的能力,提升跨媒介閱讀與交流學(xué)習(xí)的充實(shí)感。2.情境化情境教學(xué)應(yīng)指向?qū)W生的應(yīng)用,建構(gòu)富有符合時(shí)代氣息的內(nèi)容,與生活經(jīng)驗(yàn)更加貼合,對(duì)學(xué)生的語言建構(gòu)與運(yùn)用有所提升,在情境中能夠有效地進(jìn)行交流。3.任務(wù)化以任務(wù)為導(dǎo)向的序列化學(xué)習(xí),可以為學(xué)生構(gòu)建學(xué)習(xí)路線圖、學(xué)習(xí)框架等具體任務(wù)引導(dǎo);或以跨媒介的認(rèn)識(shí)與應(yīng)用為任務(wù)的設(shè)置引導(dǎo);甚至以閱讀和交流作為序列化安排的實(shí)踐引導(dǎo)。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實(shí)現(xiàn)對(duì)信息進(jìn)行“深加工”,多種媒介的信息整合只為一個(gè)核心教學(xué)內(nèi)容服務(wù)。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學(xué)生對(duì)學(xué)習(xí)內(nèi)容立體化和具體化的感悟,提升學(xué)生的審美能力。
二、教材分析本節(jié)課是讓學(xué)生結(jié)合具體情境,理解路程、時(shí)間與速度之間的關(guān)系。為此,教材安排了一個(gè)情境:比一比兩輛車誰跑得快一些?從而讓學(xué)生歸納出路程、時(shí)間與速度三個(gè)數(shù)量,進(jìn)而歸納出速度=路程÷時(shí)間,再結(jié)合試一試兩題,讓學(xué)生得出:路程=速度×時(shí)間,時(shí)間=路程÷速度,進(jìn)一步理解路程、速度、時(shí)間三者之間的關(guān)系。因此,理解路程、時(shí)間與速度之間的關(guān)系是本節(jié)課的重點(diǎn),難點(diǎn)是速度的單位。學(xué)習(xí)了這節(jié)課,學(xué)生可以解決生活中的一些實(shí)際問題,并且可以合理地安排時(shí)間,提高效率。三、學(xué)情分析學(xué)生對(duì)于路程、時(shí)間與速度的關(guān)系一定有所了解,但他們雖然知道三者之間的數(shù)量關(guān)系式,卻并不十分了解為什么有這樣的關(guān)系。因此,在課上應(yīng)遵循“問題情境---建立模式---解釋應(yīng)用”的基本敘述模式,為學(xué)生自主參與、探究和交流提供時(shí)間和空間。四、教學(xué)目標(biāo)
自主探究法:教學(xué)中強(qiáng)調(diào)以學(xué)生為主體,強(qiáng)調(diào)學(xué)生參與知識(shí)的形成過程,始終做到為學(xué)生提供充足的學(xué)習(xí)素材、創(chuàng)設(shè)充分學(xué)習(xí)的空間、時(shí)間,讓學(xué)生自主探究,體驗(yàn)知識(shí)形成的過程,培養(yǎng)主動(dòng)探究的能力。觀察法:例1觀察物體教學(xué)中的觀察是很好的學(xué)習(xí)方法。例如,教學(xué)例1時(shí),觀察目的明確。教師通過讓學(xué)生觀察長方體物體學(xué)會(huì)從不同角度觀察物體的方法。這一安排不僅給學(xué)生獨(dú)立思考的機(jī)會(huì),而且教給學(xué)生觀察的思維方法。四、說教學(xué)程序在提出問題中,引發(fā)學(xué)生思考;在自主探索中,激發(fā)學(xué)生創(chuàng)新思維;在展示交流中,感受學(xué)生的個(gè)性;在總結(jié)陳述中,體驗(yàn)成功的樂趣;在聯(lián)想記憶中進(jìn)一步發(fā)揮學(xué)生的創(chuàng)造才能。在設(shè)計(jì)這節(jié)課時(shí),我在尊重教材的基礎(chǔ)上,力求體現(xiàn)新課標(biāo)的新理念、新思想,導(dǎo)學(xué)案中設(shè)計(jì)了以下幾個(gè)教學(xué)環(huán)節(jié):
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時(shí)為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
2、講授新課:(35分鐘)通過教材第一目的講解,讓學(xué)生明白,生活和學(xué)習(xí)中有許多蘊(yùn)涵哲學(xué)道理的故事,表明哲學(xué)并不神秘總結(jié)并過渡:生活也離不開哲學(xué),哲學(xué)可以是我正確看待自然、人生、和社會(huì)的發(fā)展,從而指導(dǎo)人們正確的認(rèn)識(shí)和改造世界。整個(gè)過程將伴隨著多媒體影像資料和生生對(duì)話討論以提高學(xué)生的積極性。3、課堂反饋,知識(shí)遷移。最后對(duì)本科課進(jìn)行小結(jié),鞏固重點(diǎn)難點(diǎn),將本課的哲學(xué)知識(shí)遷移到與生活相關(guān)的例子,實(shí)現(xiàn)對(duì)知識(shí)的升華以及學(xué)生的再次創(chuàng)新;可使學(xué)生更深刻地理解重點(diǎn)和難點(diǎn),為下一框?qū)W習(xí)做好準(zhǔn)備。4、板書設(shè)計(jì)我采用直觀板書的方法,對(duì)本課的知識(shí)網(wǎng)絡(luò)在多媒體上進(jìn)行展示。盡可能的簡潔,清晰。使學(xué)生對(duì)知識(shí)框架一目了然,幫助學(xué)生構(gòu)建本課的知識(shí)結(jié)構(gòu)。5、布置作業(yè)我會(huì)留適當(dāng)?shù)淖詼y(cè)題及教學(xué)案例讓同學(xué)們做課后練習(xí)和思考,檢驗(yàn)學(xué)生對(duì)本課重點(diǎn)的掌握以及對(duì)難點(diǎn)的理解。并及時(shí)反饋。對(duì)學(xué)生在理解中仍有困難的知識(shí)點(diǎn),我會(huì)在以后的教學(xué)中予以疏導(dǎo)。
二、說教法從教學(xué)內(nèi)容來看,統(tǒng)計(jì)教學(xué)以探究研討法為主。如設(shè)計(jì)中進(jìn)行下個(gè)月進(jìn)貨的決策時(shí),對(duì)已有的銷售數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)上的分析外,其結(jié)果能對(duì)下一步的科學(xué)決策提供依據(jù),體現(xiàn)統(tǒng)計(jì)在實(shí)際生活中的作用。從教學(xué)對(duì)象來看,小學(xué)中年級(jí)多用引導(dǎo)發(fā)現(xiàn)法、嘗試教學(xué)法。隨著年齡的增長,學(xué)生對(duì)社會(huì)問題也會(huì)越來越好奇和關(guān)心,因此素材的選擇加強(qiáng)了聯(lián)系社會(huì)生活實(shí)際,如設(shè)計(jì)垃圾調(diào)查與研究等題材,潛移默化地對(duì)學(xué)生進(jìn)行保護(hù)環(huán)境等社會(huì)問題任何一節(jié)數(shù)學(xué)課都是多種教學(xué)方法的綜合運(yùn)用,如談話法、講解法等的有機(jī)結(jié)合!三、說學(xué)法在教學(xué)互動(dòng)過程中,引導(dǎo)學(xué)生探索、、交流、觀察、猜測(cè)、歸納等方法,培養(yǎng)學(xué)生的觀察能力、分析能力及合作能力。因?yàn)槭墙y(tǒng)計(jì)課,課前要去收集、整理實(shí)例,為課內(nèi)互相交流積累素材。四、說教學(xué)過程(一)情境創(chuàng)設(shè),復(fù)習(xí)舊知學(xué)校要購買一批體育器材,現(xiàn)在要調(diào)查同學(xué)們對(duì)體育運(yùn)動(dòng)的愛好。出示402班學(xué)生的縱向單式統(tǒng)計(jì)圖情況。之后收集、整理、繪制本班學(xué)生的統(tǒng)計(jì)情況。
·演示口算過程2、解決“踢毽的和跳遠(yuǎn)得各有多少人?”a、引導(dǎo)學(xué)生觀察畫面,并提出問題。b、 讓學(xué)生在畫面中收集數(shù)據(jù)。c、 學(xué)生獨(dú)立列式,并讓學(xué)生將是怎樣計(jì)算出結(jié)果的。3、分利用教材資源,嘗試提出新問題。a)收集信息及數(shù)據(jù)。引導(dǎo)學(xué)生觀察畫面:運(yùn)動(dòng)場(chǎng)上除了踢毽和跳遠(yuǎn)之外,還有哪些比賽項(xiàng)目?參加這些項(xiàng)目比賽的各有多少人?b) 小組交流,提出要解決的問題。教師問:你還能提出哪些加法計(jì)算的問題?小組討論后發(fā)表意見。c)解決同學(xué)們提出的問題。d) 小結(jié)。教師提問:仔細(xì)觀察黑板上的算式,他們的第一個(gè)加數(shù)是幾?(引出課題)計(jì)算9加幾的題目有很多種方法,你喜歡哪一種就用哪一種.4、 反饋練習(xí)游戲:小精靈算式。你想上來摘哪道就摘拿道。拿到算式的學(xué)生進(jìn)行計(jì)算,沒拿到算式的同學(xué)做裁判
2、教材分析整十?dāng)?shù)加、減整十?dāng)?shù)的計(jì)算是在10以內(nèi)加、減法的基礎(chǔ)上進(jìn)行的,只是計(jì)數(shù)單位不同,這里以十為計(jì)數(shù)單位。教學(xué)內(nèi)容的編排,分三個(gè)層次:一、以實(shí)際情景——花卉展提供計(jì)算題,并呈現(xiàn)算法的多樣化;二、讓學(xué)生動(dòng)手操作(如擺小棒)理解算理、掌握算法;三、脫離直觀手段,讓學(xué)生思考算法。通過讓學(xué)生在生動(dòng)具體的情境中學(xué)習(xí)計(jì)算,引導(dǎo)學(xué)生獨(dú)立思考與合作交流多種不同的算法,進(jìn)一步培養(yǎng)計(jì)算能力。這樣安排,有助于學(xué)生加深對(duì)相同單位的數(shù)可以直接相加、減的認(rèn)識(shí),為后面學(xué)習(xí)任意兩個(gè)數(shù)相加、減打基礎(chǔ)。整十?dāng)?shù)加、減整十?dāng)?shù)屬于計(jì)算教學(xué)中的重點(diǎn)內(nèi)容之一,應(yīng)給予足夠的重視。教材的編排是由直觀操作等依靠實(shí)物思考到脫離實(shí)物思考,遵循由具體到抽象的原則,有利于學(xué)生抽象思維的培養(yǎng),為進(jìn)一步提高計(jì)算速度、培養(yǎng)計(jì)算能力,解決實(shí)際問題打基礎(chǔ)。
2、自主探究,學(xué)習(xí)例題(1)猜價(jià)格,感受新知課件演示樂樂一家來到商場(chǎng)的情景,讓學(xué)生分別猜一猜熱水瓶、燒水壺和杯子的價(jià)錢,在出示杯子的時(shí)候,我讓學(xué)生算一算6個(gè)杯子,每個(gè)5元,一共需要多少錢?然后老師用一個(gè)普通討論者的口氣說:“買一整套會(huì)比單買一個(gè)要便宜一些,只要24元就可以買到了?!保?)同桌互相交流,培養(yǎng)合作精神先讓學(xué)生任選兩種物品和同桌互相說一說大約需要多少錢?再請(qǐng)個(gè)別學(xué)生拿著教鞭到黑板前指著自己想買的東西說一說我選了什么,大約多少錢,是怎樣估計(jì)的。(3)小組討論,學(xué)習(xí)例題1)、課件出示例題:媽媽打算買這三種生活用品,100元夠嗎?2)、學(xué)生獨(dú)立思考,再小組討論交流;3)、小組總結(jié),匯報(bào)結(jié)果:請(qǐng)小組代表到黑板上展示學(xué)習(xí)過程,并引導(dǎo)學(xué)生用自己的語言說出估算方法和結(jié)果,對(duì)不同的方法進(jìn)行鼓勵(lì);
低年級(jí)學(xué)生注意力不易持久。單調(diào)的練習(xí)學(xué)生容易產(chǎn)生厭倦情緒,降低練習(xí)效率。況且對(duì)于筆算兩位數(shù)加減兩位數(shù),學(xué)生們掌握得都很熟練了。針對(duì)這些,我把整堂課的設(shè)計(jì)注重以下幾點(diǎn):1、設(shè)計(jì)生活化的教學(xué)內(nèi)容?!稑?biāo)準(zhǔn)》指出:“人人學(xué)有價(jià)值的數(shù)學(xué)?!薄坝袃r(jià)值”的數(shù)學(xué)應(yīng)該與學(xué)生的現(xiàn)實(shí)生活和以往的知識(shí)體驗(yàn)有密切的關(guān)系,是對(duì)他們有吸引力、能使他們產(chǎn)生興趣的內(nèi)容。這節(jié)課我的教學(xué)內(nèi)容是筆算。開始時(shí)我并沒有直接出示兩位數(shù)加減兩位數(shù)的筆算練習(xí),從舊知到新知。而是試圖從日常生活入手,創(chuàng)設(shè)一個(gè)幫助老師選擇買東西的情境,希望通過幫助老師從2種價(jià)格不同的電風(fēng)扇和從2種價(jià)格不同的洗衣機(jī)中各選擇一樣,計(jì)算價(jià)格,力圖從真實(shí)的生活環(huán)境中解決問題,放開手讓他們?nèi)W(xué)。況且用學(xué)生熟悉的,有興趣的,貼近他們現(xiàn)實(shí)生活的內(nèi)容進(jìn)行教學(xué),才能喚起他們的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)習(xí)積極性,使學(xué)生感受到生活與數(shù)學(xué)知識(shí)是密不可分的,使數(shù)學(xué)課富有濃郁的生活氣息,從而產(chǎn)生學(xué)習(xí)和探求數(shù)學(xué)的動(dòng)機(jī),主動(dòng)應(yīng)用數(shù)學(xué)去思考問題、解決問題。
不足之處是: 1 、在如何有效地組織學(xué)生開展探索規(guī)律時(shí),我認(rèn)為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎(chǔ),需要因勢(shì)利導(dǎo)。在開展探索規(guī)律時(shí),我先組織讓學(xué)生猜想秘訣是什么?由于學(xué)生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學(xué)生在 “亂猜 ”。這說明學(xué)生缺乏猜想的方向和思維的空間,也是教師在組織教學(xué)時(shí)需要考慮的問題。 2 、總怕學(xué)生在這節(jié)課里不能很好的接受知識(shí),所以在個(gè)別應(yīng)放手的地方卻還在牽著學(xué)生走??偨Y(jié)性的語言也顯得有些羅嗦。 3 、課堂上學(xué)生參與學(xué)習(xí)的程度差異很明顯的:一部分學(xué)生爭(zhēng)先恐后地應(yīng)答,表現(xiàn)得很出眾,很活躍;但更多的學(xué)生或缺乏勇氣,或不善言辭,或沒有機(jī)會(huì),而淪為聽眾或觀眾。 4 、本節(jié)課在教學(xué)評(píng)價(jià)方式上略顯單一。對(duì)學(xué)生的評(píng)價(jià)少,激勵(lì)性的語言不夠。
【設(shè)計(jì)意圖:先讓學(xué)生觀察、猜想,然后自己想辦法“證明”自己的猜想。這樣設(shè)計(jì),給學(xué)生自主思考的時(shí)間和空間。在獨(dú)立思考的基礎(chǔ)上,再小組合作,把動(dòng)腦思考與動(dòng)手操作有機(jī)結(jié)合,把獨(dú)立思考與小組合作有機(jī)結(jié)合。有利于提高探索活動(dòng)的實(shí)效性?!拷處熝惨?,參與學(xué)生的操作和討論,找出有代表性的幾種“證明”方法。3.交流討論師:差不多了吧?能解釋為什么把4個(gè)蘋果放入3個(gè)抽屜,會(huì)出現(xiàn)總有一個(gè)抽屜中至少放2個(gè)蘋果這一現(xiàn)象了嗎?【學(xué)情預(yù)設(shè):】第一種:枚舉法請(qǐng)學(xué)生觀察不同的放法,能發(fā)現(xiàn)什么?引導(dǎo)學(xué)生發(fā)現(xiàn):每一種擺放情況,都一定有一個(gè)抽屜中至少放2個(gè)蘋果。也就是說不管怎么放,總有一個(gè)抽屜中至少放2個(gè)蘋果。第二種:假設(shè)法。還有沒有用不同的方法來驗(yàn)證把4個(gè)蘋果放入3個(gè)抽屜,總有一個(gè)抽屜中至少放2個(gè)蘋果這一現(xiàn)象嗎?
教法、學(xué)法分析我通過閱讀教材、教參和新課標(biāo),分析學(xué)生學(xué)習(xí)狀況,認(rèn)為對(duì)這一教學(xué)內(nèi)容理解起來比較容易。所以,在教學(xué)時(shí)我準(zhǔn)備采取以下策略:1、放手讓學(xué)生自主解決問題,嘗試計(jì)算例7的1、2題。再通過學(xué)生口述計(jì)算過程,教師設(shè)問、強(qiáng)調(diào)重點(diǎn)使學(xué)生掌握本節(jié)課知識(shí)。2、通過學(xué)生反復(fù)敘述算理,培養(yǎng)學(xué)生口頭表達(dá)能力,并使他們自主探索“被除數(shù)中間或末尾沒有0,商中間或末尾有0”這一知識(shí)形成的過程。教學(xué)目標(biāo)1、在熟練掌握一位數(shù)筆算除法法則的基礎(chǔ)上,會(huì)正確計(jì)算商中間或末尾有0的除法的另一種情況。2、能熟練地進(jìn)行商中間有零和末尾有零的除法,形成一定的筆算技能。3、能結(jié)合具體情境估算三位數(shù)除以一位數(shù)的商,增強(qiáng)估算的意識(shí)和能力。