4.They were going to find someone to take part in their bet when they saw Henry walking on the street outside.[歸納]1.過(guò)去將來(lái)時(shí)的基本構(gòu)成和用法過(guò)去將來(lái)時(shí)由“would+動(dòng)詞原形”構(gòu)成,主要表示從過(guò)去某一時(shí)間來(lái)看將要發(fā)生的動(dòng)作(尤其用于賓語(yǔ)從句中),還可以表示過(guò)去的動(dòng)作習(xí)慣或傾向。Jeff knew he would be tired the next day.He promised that he would not open the letter until 2 o'clock.She said that she wouldn't do that again.2.表示過(guò)去將來(lái)時(shí)的其他表達(dá)法(1)was/were going to+動(dòng)詞原形:該結(jié)構(gòu)有兩個(gè)主要用法,一是表示過(guò)去的打算,二是表示在過(guò)去看來(lái)有跡象表明將要發(fā)生某事。I thought it was going to rain.(2)was/were to+動(dòng)詞原形:主要表示過(guò)去按計(jì)劃或安排要做的事情。She said she was to get married next month.(3)was/were about to+動(dòng)詞原形:表示在過(guò)去看來(lái)即將要發(fā)生的動(dòng)作,由于本身已含有“即將”的意味,所以不再與表示具體的將來(lái)時(shí)間狀語(yǔ)連用。I was about to go to bed when the phone rang.(4)was/were+現(xiàn)在分詞:表示在過(guò)去看來(lái)即將發(fā)生的動(dòng)作,通??捎糜谠摻Y(jié)構(gòu)中的動(dòng)詞是come,go,leave,arrive,begin,start,stop,close,open,die,join,borrow,buy等瞬間動(dòng)詞。Jack said he was leaving tomorrow.
本來(lái)比較速度變化的快慢也有兩種方法:一種是比較相同時(shí)間內(nèi)速度變化量的大小;另一種是比較發(fā)生相同的速度變化所需要的時(shí)間長(zhǎng)短。但教材是將比較質(zhì)點(diǎn)位置移動(dòng)快慢的思想直接遷移過(guò)來(lái),通過(guò)實(shí)例分析,使學(xué)生明白不同運(yùn)動(dòng)物體的速度變化快慢不同,表現(xiàn)在速度的變化與發(fā)生這個(gè)變化所用時(shí)間的比值不同,從而引入加速度的定義方法a=△v/△t。加速度表示速度的變化快慢,包括速度增加的快慢和減小的快慢,不能誤認(rèn)為只要有加速度的運(yùn)動(dòng)速度就一定是增加的。廣義地講,加速度不僅可以描述速度大小的變化快慢,而且也可以描述速度方向變化的快慢,本節(jié)教材只限定在直線運(yùn)動(dòng)的情景中討論。加速度的矢量性是一個(gè)難點(diǎn),教材是以與速度方向相同或是相反來(lái)表述加速度的矢量性的。如果以初速度方向?yàn)檎较?,那么加速度就有正?fù)之分,加速度的正負(fù)表示加速度的方向,不表示加速度的大小。
(三)合作交流能力提升教師:剛才我們通過(guò)實(shí)驗(yàn)了解了小車的速度是怎樣隨時(shí)間變化的,但實(shí)驗(yàn)中有一定的誤差,請(qǐng)同學(xué)們討論并說(shuō)出可能存在哪些誤差,造成誤差的原因是什么?(每個(gè)實(shí)驗(yàn)小組的同學(xué)之間進(jìn)行熱烈的討論)學(xué)生:測(cè)量出現(xiàn)誤差。因?yàn)辄c(diǎn)間距離太小,測(cè)量長(zhǎng)度時(shí)容易產(chǎn)生誤差。教師:如何減小這個(gè)誤差呢?學(xué)生:如果測(cè)量較長(zhǎng)的距離,誤差應(yīng)該小一些。教師:應(yīng)該采取什么辦法?學(xué)生:應(yīng)該取幾個(gè)點(diǎn)之間的距離作為一個(gè)測(cè)量長(zhǎng)度。教師:好,這就是常用的取“計(jì)數(shù)點(diǎn)”的方法。我們應(yīng)該在紙帶上每隔幾個(gè)計(jì)時(shí)點(diǎn)取作一個(gè)計(jì)數(shù)點(diǎn),進(jìn)行編號(hào)。分別標(biāo)為:0、1、2、3……,測(cè)各計(jì)數(shù)點(diǎn)到“0”的距離。以減小測(cè)量誤差。教師:還有補(bǔ)充嗎?學(xué)生1:我在坐標(biāo)系中描點(diǎn)畫(huà)的圖象只集中在坐標(biāo)原定附近,兩條圖象沒(méi)有明顯的分開(kāi)。學(xué)生2:描出的幾個(gè)點(diǎn)不嚴(yán)格的分布在一條直線上,還能畫(huà)直線嗎?
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時(shí),本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹(shù)立運(yùn)動(dòng)變化的觀點(diǎn),并由此進(jìn)一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過(guò)實(shí)際問(wèn)題,如時(shí)針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過(guò)具體問(wèn)題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會(huì)判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運(yùn)算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點(diǎn) 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對(duì)稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對(duì)稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點(diǎn)對(duì)稱思考2: 已知任意角α的終邊與單位圓相交于點(diǎn)P(x, y),請(qǐng)同學(xué)們思考回答點(diǎn)P關(guān)于原點(diǎn)、x軸、y軸對(duì)稱的三個(gè)點(diǎn)的坐標(biāo)是什么?【答案】點(diǎn)P(x, y)關(guān)于原點(diǎn)對(duì)稱點(diǎn)P1(-x, -y)點(diǎn)P(x, y)關(guān)于x軸對(duì)稱點(diǎn)P2(x, -y) 點(diǎn)P(x, y)關(guān)于y軸對(duì)稱點(diǎn)P3(-x, y)
一、說(shuō)教材本節(jié)課選自于人教版語(yǔ)文必修二第二單元詩(shī)三首中的一首詩(shī)歌,它是陶淵明歸隱后的作品。寫(xiě)的是田園之樂(lè),實(shí)際表明的是作者不愿與世俗同流合污的心聲,甘愿守著自己的拙志回歸田園。學(xué)習(xí)該詩(shī),有助于學(xué)生了解山水田園詩(shī)的特點(diǎn),感受者作者不同流俗的高尚情操,同時(shí)可以培養(yǎng)學(xué)生初步的鑒賞古典詩(shī)歌的能力。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點(diǎn)與方程的解》,由于學(xué)生已經(jīng)學(xué)過(guò)一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點(diǎn)概念,進(jìn)一步理解零點(diǎn)判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點(diǎn)的概念;2、理 解函數(shù)零點(diǎn)與方程的根以及函數(shù)圖象與x軸交點(diǎn)的關(guān)系,掌握零點(diǎn)存在性定理的運(yùn)用;3、在認(rèn)識(shí)函數(shù)零點(diǎn)的過(guò)程中,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;b.邏輯推理:零點(diǎn)判定定理;c.數(shù)學(xué)運(yùn)算:運(yùn)用零點(diǎn)判定定理確定零點(diǎn)范圍;d.直觀想象:運(yùn)用圖形判定零點(diǎn);e.數(shù)學(xué)建模:運(yùn)用函數(shù)的觀點(diǎn)方程的根;
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過(guò)這些公式進(jìn)行求值、化簡(jiǎn)、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識(shí)與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會(huì)三角恒等變換的基本思想方法,以及進(jìn)行簡(jiǎn)單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡(jiǎn)、求值以及證明,進(jìn)而進(jìn)行簡(jiǎn)單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡(jiǎn); 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長(zhǎng)函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)之后的對(duì)函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長(zhǎng)快慢的問(wèn)題,通過(guò)函數(shù)圖像及三個(gè)函數(shù)的性質(zhì),完成函數(shù)增長(zhǎng)快慢的認(rèn)識(shí)。既是對(duì)三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長(zhǎng)差異.2、經(jīng)過(guò)探究對(duì)函數(shù)的圖像觀察,理解對(duì)數(shù)增長(zhǎng)、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問(wèn)題、分析問(wèn)題和歸納問(wèn)題的思維能力以及數(shù)學(xué)交流能力;3、在認(rèn)識(shí)函數(shù)增長(zhǎng)差異的過(guò)程中,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識(shí),探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長(zhǎng)快慢的認(rèn)識(shí);b.邏輯推理:由特殊到一般的推理;
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.4.1節(jié)《對(duì)數(shù)函數(shù)的概念》。對(duì)數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對(duì)數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無(wú)論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。學(xué)習(xí)中讓學(xué)生體會(huì)在類比推理,感受圖像的變化,認(rèn)識(shí)變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個(gè)重要的過(guò)程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對(duì)數(shù)函數(shù)的定義,會(huì)求對(duì)數(shù)函數(shù)的定義域;2、了解對(duì)數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問(wèn)題、分析問(wèn)題和歸納問(wèn)題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對(duì)數(shù)函數(shù)過(guò)程中,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識(shí),感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。
本節(jié)是新人教A版高中數(shù)學(xué)必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運(yùn)算一并集、交集、補(bǔ)集。是對(duì)集合基木知識(shí)的深入研究。在此,通過(guò)適當(dāng)?shù)膯?wèn)題情境,使學(xué)生感受、認(rèn)識(shí)并掌握集合的三種基本運(yùn)算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對(duì)象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn)。A.理解兩個(gè)集合的并集與交集的含義,會(huì)求簡(jiǎn)單集合的交、并運(yùn)算;B.理解補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;C.能使用 圖表示集合的關(guān)系及運(yùn)算。 1.數(shù)學(xué)抽象:集合交集、并集、補(bǔ)集的含義;2.數(shù)學(xué)運(yùn)算:集合的運(yùn)算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運(yùn)算。
本節(jié)內(nèi)容來(lái)自人教版高中數(shù)學(xué)必修一第一章第一節(jié)集合第二課時(shí)的內(nèi)容。集合論是現(xiàn)代數(shù)學(xué)的一個(gè)重要基礎(chǔ),是一個(gè)具有獨(dú)特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語(yǔ)言來(lái)學(xué)習(xí),在這里它是作為刻畫(huà)函數(shù)概念的基礎(chǔ)知識(shí)和必備工具。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時(shí)也是下一節(jié)學(xué)習(xí)集合間的基本運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),可以進(jìn)一步幫助學(xué)生利用集合語(yǔ)言進(jìn)行交流的能力,幫助學(xué)生養(yǎng)成自主學(xué)習(xí)、合作交流、歸納總結(jié)的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生從具體到抽象、從一般到特殊的數(shù)學(xué)思維能力,通過(guò)Venn圖理解抽象概念,培養(yǎng)學(xué)生數(shù)形結(jié)合思想。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.4.2節(jié)《對(duì)數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對(duì)數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無(wú)論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。在類比推理的過(guò)程中,感受圖像的變化,認(rèn)識(shí)變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個(gè)重要的過(guò)程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對(duì)數(shù)函數(shù)的圖像和性質(zhì);能利用對(duì)數(shù)函數(shù)的圖像與性質(zhì)來(lái)解決簡(jiǎn)單問(wèn)題;2、經(jīng)過(guò)探究對(duì)數(shù)函數(shù)的圖像和性質(zhì),對(duì)數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對(duì)數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問(wèn)題、分析問(wèn)題和歸納問(wèn)題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時(shí),本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡(jiǎn)單應(yīng)用,進(jìn)一步加深對(duì)函數(shù)概念的理解。課本從引進(jìn)函數(shù)概念開(kāi)始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對(duì)函數(shù)的認(rèn)識(shí),幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過(guò)函數(shù)的學(xué)習(xí)更好地體會(huì)數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時(shí),要充分發(fā)揮圖象的直觀作用.課程目標(biāo) 學(xué)科素養(yǎng)A.在實(shí)際情景中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實(shí)踐相互銜接的樞紐,特別在應(yīng)用意識(shí)日益加深的今天,函數(shù)模型的應(yīng)用實(shí)質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實(shí)意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實(shí)際問(wèn)題,并對(duì)給定的函數(shù)模型進(jìn)行簡(jiǎn)單的分析評(píng)價(jià),發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實(shí)際問(wèn)題.2.了解擬合函數(shù)模型并解決實(shí)際問(wèn)題.3.通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認(rèn)識(shí)函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實(shí)際問(wèn)題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運(yùn)算:運(yùn)用函數(shù)模型解決實(shí)際問(wèn)題;
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.