探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設計1.函數(shù)與圖象之間是一一對應的關系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應關系.
一、教材的地位與作用 本節(jié)主要學習一元一次不等式組及其解集的概念,并要求學生會用數(shù)軸確定解集。它是一元一次不等式的后續(xù)學習,也是一種基本的數(shù)學模型,也為下節(jié)和今后解決實際生產(chǎn)和生活問題奠定了堅實的知識基礎。另外,整個學習的過程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結(jié)合的思想,這種數(shù)學思想會一直影響著學生今后數(shù)學的學習。二、學情分析從學生學習的心理基礎和認知特點來說,學生已經(jīng)學習了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實際問題抽象為數(shù)學模型,有一定的數(shù)學化歸能力。但學生將兩個一元一次不等式的解集在同一數(shù)軸上表示會產(chǎn)生一定的困惑。這個年齡段的學生,以感性認識為主,并向理性認知過渡,所以,本節(jié)課的設計是通過學生所熟悉的問題情境,讓學生獨立思考,合作交流,從而引導其自主學習。
一.學生情況分析對于三角形的內(nèi)角和定理,學生在小學階段已通過量、折、拼的方法進行了合情推理并得出了相關的推論。在小學認識三角形,通過觀察、操作,得到了三角形內(nèi)角和是180°。但在學生升入初中階段學習過推理證明后,必須明確推理要有依據(jù),定理必須通過邏輯證明?,F(xiàn)在的學生喜歡動手實驗,操作能力較強,但對知識的歸納、概括能力以及知識的遷移能力不強。部分優(yōu)秀學生已具備良好的學習習慣,有一定分析、歸納能力。
本環(huán)節(jié)運用了一個階梯式的問答方法,幫助突破本節(jié)課的難點。同時,從具體的實際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點問題,而且從另外一個角度講也滲透給了學生的數(shù)形結(jié)合思想,還有利于學生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應用本節(jié)課所學的知識以及所積累形成的學習經(jīng)驗和體驗解決問題的過程,即課堂鞏固訓練。在練習題的選擇上,由簡單到復雜。先是結(jié)合圖象獲取信息進行簡單的填空和選擇,此題屬于A組題型,檢驗學生的掌握情況;然后進行了一道B組題,關于“一次函數(shù)與一元一次方程的關系”知識點的靈活運用,進一步通過練習體會它們的關系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學習的分段函數(shù)練習,發(fā)散學生思維問題的訓練。讓學生體會分段函數(shù)的特點,并掌握求分段函數(shù)解析式的方法。
有意義,字母x的取值必須滿足什么條件?設計意圖:通過例題的講解,使學生加深對所學知識的理解,避免一些常見錯誤。而變式練習設計,延續(xù)的例題的風格,一步一步,步步深入,本節(jié)課的教學難點就在學生的操作活動中迎刃而解了。對提高學生對所學知識的遷移能力和應用意識,激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運用,提高認識1、通過基礎訓練讓學生體驗學習的成就感。2、應用拓展:增加難處,再次讓學生聯(lián)系以前的知識,增強學生的數(shù)學應用意識。(六)、總結(jié)評價,質(zhì)疑問難這節(jié)課我們學習了什么?設計意圖:學生共同總結(jié),互相取長補短,學生在暢所欲言中對二次根式的認知得到進一步的鞏固升華。五、板書設計.采用綱領式的板書,使學生有“話”可說,有“理”可循,在簡單板書設計中使學生體會到數(shù)學的簡潔美。
探究活動二的安排,是要讓學生明確只靠實驗得出的結(jié)論,可能會以點帶面,從而進一步說明學習推理的必要性。并小結(jié)出:如果要判斷一個結(jié)論不正確只要舉一個反例就可以了。探究活動三的安排是說明只靠實驗得出的結(jié)論也不可靠,必須經(jīng)過有根有據(jù)的推理才行?;顒咏涣鳎海?)在數(shù)學學習中,你用到過推理嗎?(2)在日常生活中,你用到過推理嗎?這是一座橋梁,把課堂引向推理的方法。例題的安排,可以讓學生學會簡單的推理方法,同時增強學生的學習興趣。課堂練習:①游戲:蘋果在哪里?②判斷:是誰打破玻璃?把練習變成游戲的形式,也是為了增加課堂的趣味性,提高學生的學習興趣。課堂小結(jié):進一步明確學習推理的必要性。課后作業(yè):①課本習題6.1:2,3。②預習下一節(jié):定義與命題
[互動2]師:請大家從上面的解題經(jīng)歷中,總結(jié)一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達式?小組討論之后再發(fā)表意見。生:第一步根據(jù)圖象,確定這個函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設函數(shù)表達式;第三步:根據(jù)表達式列等式,若是正比例函數(shù),只要找圖象上一個點的坐標就可以了;若是一次函數(shù),則需要找到圖象上兩個點的坐標,然后把點的坐標分別代入所設的解析式中,組成關于R、b的一個或兩個方程。第四步:求出R、b的值第五步:把R、b的值代回到表達式中就可以了。師:分析得太好了。那么,大家說一說,確定正比例函數(shù)的表達式需要幾個條件?確定一次函數(shù)的表達式呢?要說明理由。生:確定正比例函數(shù)需要一個條件,而確定一次函數(shù)需要兩個條件。原因是正比例函數(shù)的表達式:y=Rx(R≠0)中,只有一個系數(shù)R,而一次函數(shù)的表達式y(tǒng)=Rx+b(R≠0)中,有兩個系數(shù)(待定)R和b。
③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據(jù)所給條件寫出簡單的一次函數(shù)表達式是本節(jié)課的重點加難點,所以在解決這一問題時及時引導學生總結(jié)學習體會,教給學生掌握“從特殊到一般”的認識規(guī)律中發(fā)現(xiàn)問題的方法。類比出一次函數(shù)關系式的一般式的求法,以此突破教學難點。在學習過程中,我巡視并予以個別指導,關注學生的個體發(fā)展。經(jīng)學生分析:(1)當月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當x=1760時,y=0.05×(1760-1600)=8(元);(3)設此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學效果課前:通過本節(jié)課的學習,教學目標應該可以基本達成,學生能夠理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關系,并能正確識別一次函數(shù)解析式,能根據(jù)所給條件寫出簡單的一次函數(shù)表達式,且通過本節(jié)課的學習學生的抽象思維能力,數(shù)學應用能力都能有所提升,
方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關系,關鍵是正確利用待定系數(shù)法求出一次函數(shù)的關系式.三、板書設計一次函數(shù)的應用單個一次函數(shù)圖象的應用一次函數(shù)與一元一次方程的關系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數(shù)與一元一次方程的關系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
方法總結(jié):(1)若被開方數(shù)中含有負因數(shù),則應先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯(lián)系,加深學生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認結(jié)果的合理性等等.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學模型,學會逐步掌握基本的數(shù)學知識和方法,形成良好的數(shù)學思維習慣和應用意識,提高解決問題的能力,感受數(shù)學創(chuàng)造的樂趣,增進學好數(shù)學的信心,增加對數(shù)學較全面的體驗和理解.
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關系.
探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學過的知識來推導出新的定理以及運用新的定理解決相關問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設計為什么,要證明)推理的意義:數(shù)學結(jié)論必須經(jīng)過嚴格的論證檢驗數(shù)學結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學生的好奇心,從而認識證明的必要性,培養(yǎng)學生的推理意識,了解檢驗數(shù)學結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.
探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設計勾股定理驗證拼圖法面積法簡單應用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應用勾股定理解決一些實際問題,學會勾股定理的應用并逐步培養(yǎng)學生應用數(shù)學解決實際問題的能力,為后面的學習打下基礎.
解:設甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設未知數(shù)時,一般是求什么,設什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應用題,要抓住題中反映數(shù)量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的“趣”;進一步強調(diào)數(shù)學與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.
2、課標要求對于本節(jié)課內(nèi)容課標要求:探索并掌握兩個三角形全等的條件;注重所學內(nèi)容與現(xiàn)實生活的聯(lián)系,注重經(jīng)歷觀察、操作、推理、想像等探索過程。初步建立空間觀念,發(fā)展幾何直覺;在探索并掌握兩個三角形全等的條件,與他人合作交流的過程中,發(fā)展合情推理,進一步學習有條理的思考與表達。二、學生分析 1、七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,激發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要不斷創(chuàng)造條件和機會,讓學生發(fā)表見解,充分發(fā)揮學生學習的主動性,體現(xiàn)學生的主體地位。
學生以小組為單位,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算.意圖:通過學生的合作探究,找到解決“螞蟻怎么走最近”的方法,將曲面最短距離問題轉(zhuǎn)化為平面最短距離問題并利用勾股定理求解.在活動中體驗數(shù)學建摸,培養(yǎng)學生與人合作交流的能力,增強學生探究能力,操作能力,分析能力,發(fā)展空間觀念.3.突破重點、突破難點的策略在教學過程中教師應通過情景創(chuàng)設,激發(fā)興趣,鼓勵引導學生經(jīng)歷探索過程,得出結(jié)論,從而發(fā)展學生的數(shù)學應用能力,提高學生解決實際問題的能力.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。