1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導入同學們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標準角度為30°±1°,一名質(zhì)檢員在檢驗時,手拿一量角器逐一測量∠α的度數(shù).請你運用所學的知識分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計更好的質(zhì)檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
一、教材分析“商中間、末尾有0的除法”是人教版義務(wù)教育課程標準實驗教材數(shù)學三年級下冊第二單元“除數(shù)是一位數(shù)的除法”的最后一部分內(nèi)容。屬于“數(shù)與代數(shù)”的知識領(lǐng)域的數(shù)的計算。例6是其中“被除數(shù)哪一位上的數(shù)是0且前面沒有余數(shù)時要在商這一位上寫0”的情況。在這一例題之前,教材先安排了“基本的筆算除法”和“除法的驗算”內(nèi)容。因此,在學習本例題之前,學生對“除數(shù)是一位數(shù)的除法”的算理、算法已經(jīng)基本掌握,因此有了一定的基礎(chǔ)?!吧讨虚g、末尾有0的除法”只是除法中的特殊情況,是除法計算法則的補充,也是這一單元的難點內(nèi)容。關(guān)鍵是讓學生親歷“0占位”的思維過程,為以后四年級學習“除數(shù)是兩位數(shù)或多位數(shù)”的除法奠定基礎(chǔ)。
一、舊知回顧1、有理數(shù)的加法法則:(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。(2)絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。(3)互為相反數(shù)的兩數(shù)相加得零。(4)一個數(shù)與零相加,仍得這個數(shù)。注意:一個有理數(shù)由符號和絕對值兩部分組成,進行加法運算時,應(yīng)注意確定和的符號和絕對值.
解析:水是生命之源,節(jié)約水資源是我們每個居民都應(yīng)有的意識.題中給出假如每人浪費一點水,當人數(shù)增多時,將是一個非常驚人的數(shù)字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結(jié):從實際問題入手讓學生體會科學記數(shù)法的實際應(yīng)用.題中沒有直接給出數(shù)據(jù),應(yīng)先計算,再表示.探究點二:將用科學記數(shù)法表示的數(shù)轉(zhuǎn)換為原數(shù)已知下列用科學記數(shù)法表示的數(shù),寫出原來的數(shù):(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數(shù)點向右移動4位即可;(2)將6.070的小數(shù)點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結(jié):將科學記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a的小數(shù)點向右移動n位所得到的數(shù).三、板書設(shè)計借助身邊熟悉的事物進一步體會大數(shù),積累數(shù)學活動經(jīng)驗,發(fā)展數(shù)感、空間感,培養(yǎng)學生自主學習的能力.
光年是表示較大距離的一個單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米??梢姡?毫米= 納米,容易算出,1納米相當于1毫米的一百萬分之一??上攵?,1納米是多么的小。超微粒子的大小一般在1~100 納米范圍內(nèi),故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點,可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調(diào)性可制成隱形飛機的涂料。納米材料的表面積大,對外界環(huán)境(物理的和化學的)十分敏感,在制造傳感器方面是有前途的材料,目前已開發(fā)出測量溫度、熱輻射和檢測各種特定氣體的傳感器。在生物和醫(yī)學中也有重要應(yīng)用。納米材料科學是20世紀80年代末誕生并正在崛起的科技新領(lǐng)域,它將成為跨世紀的科技熱點之一。
還有其他解法嗎?從中讓學生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導學生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?多媒體展示上面變形的過程,讓學生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.
1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個變化過程可以叫做移項.學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.對比練習: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、化簡、檢驗.)
讓學生先獨立解決⑴題,再小組交流⑵題的答案,找到解題的方法.2、例2,例3是對平方根概念的鞏固與拓展,在例2中由于學生還不熟于平方根的表示方法,所以應(yīng)在平方根的概念和±號上加以明確,而例3則要把握平方根概念的本質(zhì),根據(jù)該數(shù)的正負或0來確定其平方根,這部分內(nèi)容可用板演或展臺展示結(jié)果的方式進行,讓學生獨立完成,應(yīng)給予恰當?shù)脑u價.3、最后,我又設(shè)計了一道辨析題:在做一道求4的平方根的題目時,小明說:“4的平方根是2”,小紅說:“4的平方根是-2”,小強說:“2是4的平方根”小芳說:“-2是4的平方根”,請問他們的說法正確嗎?通過這道題目,使學生在熟悉平方根概念的基礎(chǔ)上更加深理解,同時對以往五種運算中從未出現(xiàn)過的一題兩解的現(xiàn)象作出了解釋,使學生明白了一種整體與局部的關(guān)系,再一次突出了重點.
三、說教法和學法:1、說教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學手段,使操作過程形象、直觀呈現(xiàn),以便學生更好的理解。在教學過程中,引導學生去探索,使學生感受到添加輔助線的數(shù)學思想,更好地掌握三角形內(nèi)角和定理的證明及簡單的應(yīng)用,2、說學法:根據(jù)本節(jié)課特點和學生的實際,在教學過程中給學生足夠的時間認真、仔細地動手書寫證明過程,使學生的學習落到實處。同時,培養(yǎng)學生科學的學習方法和自信心。四、說教學過程設(shè)計教學過程的設(shè)計有:1、問題引入新課:七年級已經(jīng)學習三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學過的知識引入,符合學生的認知規(guī)律。在拼圖活動中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說理”證明作好準備,使學生體會到數(shù)學來源于實踐,同時對新知識的學習有了期待。
接下來請同學們改造這五個句子,變成“如果??,那么??”句式,其實就是一個語文環(huán)節(jié)中的造句,同學們很活躍,紛紛舉手發(fā)言。課堂檢測練習我用到的是課本221頁習題6.2第1、2題,有個別同學會做錯,做錯點在于對判斷還把握不夠到位,還有少數(shù)同學對定義與命題的理解產(chǎn)生混亂。據(jù)此,我提出:定義與命題兩個概念該如何區(qū)別?同學們舉手發(fā)言:定義是一個描述性的概念,而命題是判斷一件事情的句子。還有同學說道:定義就是一個“??叫??”的句式,命題就是“如果??那么??”的句式。在教學中,學生對定義與命題的把握還是比較清楚的。大部分學生可以口頭完成導學案設(shè)計的題目。能夠迅速的把一個命題轉(zhuǎn)化成“如果?那么?”的形式.利用疑問句和祈使句的特點,判定不是命題的語句.迅速的掌握情況還是比較可以的。
探究活動二的安排,是要讓學生明確只靠實驗得出的結(jié)論,可能會以點帶面,從而進一步說明學習推理的必要性。并小結(jié)出:如果要判斷一個結(jié)論不正確只要舉一個反例就可以了。探究活動三的安排是說明只靠實驗得出的結(jié)論也不可靠,必須經(jīng)過有根有據(jù)的推理才行?;顒咏涣鳎海?)在數(shù)學學習中,你用到過推理嗎?(2)在日常生活中,你用到過推理嗎?這是一座橋梁,把課堂引向推理的方法。例題的安排,可以讓學生學會簡單的推理方法,同時增強學生的學習興趣。課堂練習:①游戲:蘋果在哪里?②判斷:是誰打破玻璃?把練習變成游戲的形式,也是為了增加課堂的趣味性,提高學生的學習興趣。課堂小結(jié):進一步明確學習推理的必要性。課后作業(yè):①課本習題6.1:2,3。②預習下一節(jié):定義與命題
【設(shè)計意圖】:這一環(huán)節(jié)的設(shè)計主要是為了培養(yǎng)學生自主學習的能力,讓學生在自學中初步認識概念。通過材料的閱讀,活動的實踐,讓學生在自畫、自糾中,加深對概念的理解,培養(yǎng)學生良好的畫圖習慣。(三)例題講解學生活動4:(由于例題都比較簡單,所以讓學生自己先做,教師巡視指導)例1、寫出圖中A、B、C、D、E各點的坐標。例2、在直角坐標系中,描出下列各點:A(4,3), B(-2,3),C(-4,-1),D(2,-2)?!驹O(shè)計意圖】:例1的目的是給出點的位置,寫出點的坐標。例2的目的是給出點的坐標,描出點。學完概念之后,馬上對概念進行應(yīng)用,達到鞏固的目的。當時上課時這2道例題的解答都比較圓滿,絕大部分學生都能順利做出。
學生以小組為單位,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算.意圖:通過學生的合作探究,找到解決“螞蟻怎么走最近”的方法,將曲面最短距離問題轉(zhuǎn)化為平面最短距離問題并利用勾股定理求解.在活動中體驗數(shù)學建摸,培養(yǎng)學生與人合作交流的能力,增強學生探究能力,操作能力,分析能力,發(fā)展空間觀念.3.突破重點、突破難點的策略在教學過程中教師應(yīng)通過情景創(chuàng)設(shè),激發(fā)興趣,鼓勵引導學生經(jīng)歷探索過程,得出結(jié)論,從而發(fā)展學生的數(shù)學應(yīng)用能力,提高學生解決實際問題的能力.
教學要求1. 通過生活中的事例,學會解決“找次品”這類問題的思想方法。2. 體會解決問題策略的多樣性及運用優(yōu)化的方法解決問題的有效性。3. 感受到數(shù)學在日常生活中的廣泛應(yīng)用,培養(yǎng)應(yīng)用意識和解決實際問題的能力。學情分析有化是一種重要的數(shù)學思想方法,可有效地分析和解決問題。本單元主要以“找次品”這一操作活動為載體,讓學生通過觀察、猜測、推理的方法感受解決問題策略的多樣性,在此基礎(chǔ)上,通過歸納、推理的方法體會運用優(yōu)化策略解決問題的有效性,感受數(shù)學的魅力。這些內(nèi)容對五年級的學生來說有一定的難度,所以應(yīng)讓學生在具體操作和試驗中感悟、體會,由此使學生養(yǎng)成勤于思考、勇于探索的精神。教學重點學會解決“找次品”這類問題的方法。
一、說教材(一)教材簡析《假分數(shù)化成整數(shù)或帶分數(shù)》是小學數(shù)學五年級(下冊)第六單元中的內(nèi)容。本節(jié)內(nèi)容安排了兩個例題。這部分內(nèi)容是在學生掌握了假分數(shù)的意義后,進一步學習把假分數(shù)化成整數(shù)或帶分數(shù),有利于以后進行分數(shù)計算打下堅實的基礎(chǔ)。(二)教學目標根據(jù)教材編排特點,我確定以下教學目標:1、知道帶分數(shù)是假分數(shù),是整數(shù)與真分數(shù)合成的數(shù)。2、會把假分數(shù)化成整數(shù)或帶分數(shù)。3、使學生經(jīng)歷假分數(shù)化成整數(shù)或帶分數(shù)的探索過程,進一步發(fā)展數(shù)感。4、培養(yǎng)良好的學習習慣,樹立學好數(shù)學的信心。(三)教學重、難點會把假分數(shù)化成整數(shù)或帶分數(shù)。二、說教法、學法通過這一環(huán)節(jié)的教學,把假分數(shù)化成整數(shù)或帶分數(shù)時,先要讓學生根據(jù)假分數(shù)的含義進行思考。在這個基礎(chǔ)上,再啟發(fā)學生根據(jù)分數(shù)與除法的關(guān)系計算出結(jié)果,并把用不同方法求得的結(jié)果進行比較,認識到每種方法都是有道理的。
1、教學內(nèi)容本節(jié)課是人教版小學數(shù)學四年級下冊第四單元《小數(shù)的意義和性質(zhì)》第一課時《小數(shù)的意義》的教學內(nèi)容。小數(shù)的意義是一節(jié)概念教學課,這是在學習了“分數(shù)的初步認識”和“小數(shù)的初步認識”的基礎(chǔ)上學習的。掌握小數(shù)的意義,是這單元教學的重點,直接關(guān)系到小數(shù)的性質(zhì)、單名數(shù)和復名數(shù)相互改寫等相關(guān)知識。 2、教材的重點和難點小數(shù)的初步認識是小學數(shù)學概念中較抽象,難理解的內(nèi)容。一位小數(shù)是十分之幾的分數(shù)的另一種表示形式。學生雖然對分數(shù)已有了初步的認識,也學過長度單位、貨幣單位間的進率,但理解小數(shù)的含義還是有一定的困難的。同時學生在以后的學習中,小數(shù)方面出現(xiàn)的很多問題是屬于小數(shù)概念不清。因此,理解小數(shù)的含義(一位小數(shù)表示十分之幾)既是本課時的重點、又是難點。在教學中要注意抓住分數(shù)與小數(shù)的含義的關(guān)鍵。
第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程.解這個一元一次方程,便可得到一個未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程組的解.目的:鼓勵學生通過本節(jié)課的學習,談?wù)勛约旱氖斋@與感受,加深對 “溫故而知新” 的體會,知道“學而時習之”.設(shè)計效果:學生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進一步鞏固了所學知識.第六環(huán)節(jié):布置作業(yè)課本習題5.2教學設(shè)計反思1.引入自然.二元一次方程組的解法是學習二元一次方程組的重要內(nèi)容.教材通過上一小節(jié)的實際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學生的探究有很好的認知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導學生充分思考和體驗轉(zhuǎn)化與化歸思想,增強學生的觀察歸納能力,提高學生的學習能力.
2.法解二元一次方程組,是提升學生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學習二元一次方程組的解法中,關(guān)鍵是領(lǐng)會其本質(zhì)思想——消元,體會“化未知為已知”的化歸思想.因而在教學過程中教師通過對問題的創(chuàng)設(shè),鼓勵學生去觀察方程的特點,在過手訓練中提高學生的解答正確率和表達規(guī)范性,提升學生學會數(shù)學的信心,激發(fā)學習數(shù)學的興趣.3.通過精心設(shè)計的問題,引導學生在已有知識的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓練活動中,加深學生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學生掌握知識、技能和方法,提高學習效率,而且還加深了對數(shù)學中通性和通法的認識,體會學習數(shù)學和研究數(shù)學的規(guī)律,提升數(shù)學思維能力.