提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中語文必修4《李清照詞兩首》教案

  • 高中思想政治人教版必修三《文化創(chuàng)新的途徑》說課稿

    高中思想政治人教版必修三《文化創(chuàng)新的途徑》說課稿

    二、說學情本課的教學對象為高二學生,他們思維活躍已具備一定歸納能力和分析、綜合能力,能夠自主地分析現(xiàn)實生活中的一些文化行為,但看問題往往比較偏激、片面,缺乏良好的邏輯思維能力。所以,在文化創(chuàng)新的途徑上要對他們進行指導(dǎo),以免走入誤區(qū)。三、教學目標根據(jù)新課程標準、教材特點、學生的實際,我確定了如下教學目標:【知識與能力目標】1.理解文化創(chuàng)新的根本途徑和兩個基本途徑;2.了解文化創(chuàng)新過程中需要堅持正確方向,克服錯誤傾向。

  • 人教A版高中數(shù)學必修一奇偶性教學設(shè)計(2)

    人教A版高中數(shù)學必修一奇偶性教學設(shè)計(2)

    《奇偶性》內(nèi)容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標1、理解函數(shù)的奇偶性及其幾何意義;2、學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學會判斷函數(shù)的奇偶性.數(shù)學學科素養(yǎng)1.數(shù)學抽象:用數(shù)學語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學運算:運用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學建模:在具體問題情境中,運用數(shù)形結(jié)合思想,利用奇偶性解決實際問題。重點:函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點:函數(shù)奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。

  • 人教A版高中數(shù)學必修一誘導(dǎo)公式教學設(shè)計(1)

    人教A版高中數(shù)學必修一誘導(dǎo)公式教學設(shè)計(1)

    一、復(fù)習回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關(guān)于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關(guān)于原點對稱點P1(-x, -y)點P(x, y)關(guān)于x軸對稱點P2(x, -y) 點P(x, y)關(guān)于y軸對稱點P3(-x, y)

  • 人教A版高中數(shù)學必修一對數(shù)的運算教學設(shè)計(1)

    人教A版高中數(shù)學必修一對數(shù)的運算教學設(shè)計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質(zhì),理解它的關(guān)鍵就是通過實例使學生認識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導(dǎo)對數(shù)的運算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學科有著很重要的地位。解決重點的關(guān)鍵是抓住對數(shù)的概念、并讓學生掌握對數(shù)式與指數(shù)式的互化;通過實例推導(dǎo)對數(shù)的運算性質(zhì),讓學生準確地運用對數(shù)運算性質(zhì)進行運算,學會運用換底公式。培養(yǎng)學生數(shù)學運算、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關(guān)對數(shù)計算。

  • 人教A版高中數(shù)學必修一對數(shù)的運算教學設(shè)計(2)

    人教A版高中數(shù)學必修一對數(shù)的運算教學設(shè)計(2)

    學生已經(jīng)學習了指數(shù)運算性質(zhì),有了這些知識作儲備,教科書通過利用指數(shù)運算性質(zhì),推導(dǎo)對數(shù)的運算性質(zhì),再學習利用對數(shù)的運算性質(zhì)化簡求值。課程目標1、通過具體實例引入,推導(dǎo)對數(shù)的運算性質(zhì);2、熟練掌握對數(shù)的運算性質(zhì),學會化簡,計算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)的運算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學運算:對數(shù)運算性質(zhì)的應(yīng)用;4.數(shù)學建模:在熟悉的實際情景中,模仿學過的數(shù)學建模過程解決問題.重點:對數(shù)的運算性質(zhì),換底公式,對數(shù)恒等式及其應(yīng)用;難點:正確使用對數(shù)的運算性質(zhì)和換底公式.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數(shù)有哪些性質(zhì)?如 要求:讓學生自由發(fā)言,教師不做判斷。而是引導(dǎo)學生進一步觀察.研探.

  • 人教A版高中數(shù)學必修一對數(shù)的概念教學設(shè)計(2)

    人教A版高中數(shù)學必修一對數(shù)的概念教學設(shè)計(2)

    對數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學習指數(shù)的基礎(chǔ)上通過實例總結(jié)歸納對數(shù)的概念,通過對數(shù)的性質(zhì)和恒等式解決一些與對數(shù)有關(guān)的問題.課程目標1、理解對數(shù)的概念以及對數(shù)的基本性質(zhì);2、掌握對數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)的概念;2.邏輯推理:推導(dǎo)對數(shù)性質(zhì);3.數(shù)學運算:用對數(shù)的基本性質(zhì)與對數(shù)恒等式求值;4.數(shù)學建模:通過與指數(shù)式的比較,引出對數(shù)定義與性質(zhì).重點:對數(shù)式與指數(shù)式的互化以及對數(shù)性質(zhì);難點:推導(dǎo)對數(shù)性質(zhì).教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導(dǎo)入已知中國的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達到18億,20億,30億......”,該如何解決?要求:讓學生自由發(fā)言,教師不做判斷。而是引導(dǎo)學生進一步觀察.研探.

  • 人教A版高中數(shù)學必修一函數(shù)的概念教學設(shè)計(2)

    人教A版高中數(shù)學必修一函數(shù)的概念教學設(shè)計(2)

    函數(shù)在高中數(shù)學中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個實例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學會求函數(shù)的定義域與函數(shù)值。數(shù)學學科素養(yǎng)1.數(shù)學抽象:通過教材中四個實例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學運算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運用分離常數(shù)法和換元法求值域;5.數(shù)學建模:通過從實際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學生從“特殊到一般”的分析問題的能力,提高學生的抽象概括能力。重點:函數(shù)的概念,函數(shù)的三要素。難點:函數(shù)概念及符號y=f(x)的理解。

  • 人教A版高中數(shù)學必修一基本不等式教學設(shè)計(2)

    人教A版高中數(shù)學必修一基本不等式教學設(shè)計(2)

    《基本不等式》在人教A版高中數(shù)學第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學的嚴謹性。數(shù)學學科素養(yǎng)1.數(shù)學抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點:基本不等式的推導(dǎo)以及證明過程.

  • 人教A版高中數(shù)學必修一集合的概念教學設(shè)計(2)

    人教A版高中數(shù)學必修一集合的概念教學設(shè)計(2)

    例7 用描述法表示拋物線y=x2+1上的點構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設(shè)問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數(shù).變式2.[變條件,變設(shè)問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數(shù).解題技巧(認識集合含義的2個步驟)一看代表元素,是數(shù)集還是點集,二看元素滿足什么條件即有什么公共特性。

  • 人教A版高中數(shù)學必修一任意角教學設(shè)計(1)

    人教A版高中數(shù)學必修一任意角教學設(shè)計(1)

    本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學思想方法;

  • 人教A版高中數(shù)學必修一任意角教學設(shè)計(2)

    人教A版高中數(shù)學必修一任意角教學設(shè)計(2)

    學生在初中學習了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導(dǎo)入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.

  • 人教A版高中數(shù)學必修二簡單隨機抽樣教學設(shè)計

    人教A版高中數(shù)學必修二簡單隨機抽樣教學設(shè)計

    知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標的全體作為總體,每一個調(diào)查對象的相應(yīng)指標作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。

  • 人教A版高中數(shù)學必修一誘導(dǎo)公式教學設(shè)計(2)

    人教A版高中數(shù)學必修一誘導(dǎo)公式教學設(shè)計(2)

    本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學中的應(yīng)用,在練習中加以應(yīng)用,讓學生進一步體會 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學思想的探究過程,培養(yǎng)學生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應(yīng)用。課程目標1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。

  • 人教版高中政治選修3按照民主集中制建立的新型政體教案

    人教版高中政治選修3按照民主集中制建立的新型政體教案

    ◇本框題小結(jié):◇3個體現(xiàn):即人民代表大會制度是我國的根本政治制度的3個體現(xiàn)(1)、人民代表大會制度決定著國家的其他各種具體制度;(2)、人民代表大會制度是中國人民當家作主的最高形式和重要途徑;(3)、人民代表大會制度是中國社會主義政治文明的重要制度載體?!?個表現(xiàn):即民主集中制確保國家權(quán)力協(xié)調(diào)高效的表現(xiàn):(1)、從人民代表大會和人民的關(guān)系來看①各級人民代表受選民和原選舉單位的監(jiān)督,選民或選舉單位有權(quán)罷免自己選舉出的代表;②各級人民代表大會代表人民統(tǒng)一行使國家權(quán)力(2)、從人民代表大會與其他國家機關(guān)的關(guān)系來看①其他國家機關(guān)都由人民代表大會產(chǎn)生,對它負責、受它監(jiān)督;②在人民代表大會統(tǒng)一行使國家權(quán)力的前提下,其他國家機關(guān)依照法定分工依法行使各自的職權(quán)。(3)、從中央和地方的關(guān)系來看①地方必須服從中央;②在保證中央統(tǒng)一領(lǐng)導(dǎo)的同時,必須考慮地方特殊利益,充分發(fā)揮地方的主動性和積極性。

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(1)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(1)

    本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學建模:公式的靈活運用;

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(2)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.

  • 人教A版高中數(shù)學必修一全稱量詞與存在量詞教學設(shè)計(2)

    人教A版高中數(shù)學必修一全稱量詞與存在量詞教學設(shè)計(2)

    (4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.

  • 圓的一般方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    情境導(dǎo)學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 空間向量基本定理教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    空間向量基本定理教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結(jié)合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個正交基底.

  • 點到直線的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    點到直線的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

上一頁123...474849505152535455565758下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!