提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中生物必修3第二章第四節(jié)《免疫調(diào)節(jié)》說課稿

  • 空間向量基本定理教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量基本定理教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個正交基底.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    點(diǎn)到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    4.已知△ABC三個頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時,A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩點(diǎn)間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點(diǎn)C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).

  • 兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個獨(dú)立條件得到三個方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點(diǎn)的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的點(diǎn)斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的兩點(diǎn)式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:①過原點(diǎn)時,直線方程為y=-34x.②直線不過原點(diǎn)時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中政治必修4唯物主義和唯心主義精品教案

    人教版高中政治必修4唯物主義和唯心主義精品教案

    一、教材分析《唯物主義和唯心主義》是人教版高中思想政治必修模塊4《生活與哲學(xué)》第一單元第二課第二框題內(nèi)容。這一框主要是通過對哲學(xué)存在和發(fā)展的具體形態(tài)的介紹,讓學(xué)生從中感受什么是哲學(xué)。圍繞著這個問題,教材設(shè)計了兩目:第一目主要是通過對歷史上各種不同的唯物主義哲學(xué)的介紹,從中概括出唯物主義的三種基本形態(tài);第二目主要是通過對歷史上各種不同的唯心主義哲學(xué)的介紹,從中概括出唯心主義的兩種基本形態(tài)。二、教學(xué)目標(biāo)(一)知識目標(biāo)什么是唯物主義,什么是唯心主義 ;理解哲學(xué)基本問題第一方面的內(nèi)容是劃分唯物主義和唯心主義的唯一標(biāo)準(zhǔn);如何區(qū)分唯物主義的三種基本形態(tài)和唯心主義的兩種基本形態(tài)。(二)能力目標(biāo)初步具有自覺運(yùn)用唯物主義理論知識,分析和把握社會生活現(xiàn)象的 能力。(三)情感、態(tài)度與價值觀目標(biāo)在實踐中堅持辨證唯物主義觀點(diǎn),自覺反對和批判唯心主義。三、教學(xué)重點(diǎn)難點(diǎn)1、唯物主義和唯心主義的根本觀點(diǎn)(重點(diǎn))

  • 人教版高中政治必修4矛盾是事物發(fā)展的源泉和動力精品教案

    人教版高中政治必修4矛盾是事物發(fā)展的源泉和動力精品教案

    一、教材分析第一目,矛盾的統(tǒng)一性和斗爭性。世界上的一切事物都包含著兩個方面——矛盾的定義——矛盾的兩個基本屬性——矛盾的同一性——矛盾的斗爭性——同一性和斗爭性的辯證關(guān)系。這一目的重點(diǎn)是讓學(xué)生理解世界上的一切事物都包含著矛盾,沒有矛盾就沒有世界。第二目,矛盾的普遍性和特殊性。這一目邏輯順序是:事事有矛盾,時時有矛盾——承認(rèn)矛盾的普遍性是堅持唯物主義的前途——矛盾的特殊性及其三層涵義——矛盾的普遍性和特殊性的辯證關(guān)系——矛盾普遍性和特殊性關(guān)系的原理是矛盾問題的精髓。最后得出結(jié)論:馬克思主義普遍原理與中國具體實際相結(jié)合體現(xiàn)了矛盾普遍性和特殊性的具體的歷史的統(tǒng)一。學(xué)習(xí)了唯物辯證法的矛盾觀,就要學(xué)會理論聯(lián)系實際,學(xué)會在生活、學(xué)習(xí)和工作中進(jìn)一步運(yùn)用所學(xué)的知識,處理好生活中的實際問題

  • 人教版高中歷史必修3現(xiàn)代中國教育的發(fā)展教案

    人教版高中歷史必修3現(xiàn)代中國教育的發(fā)展教案

    2、確立教育優(yōu)先發(fā)展地位,提出“科教興國”戰(zhàn)略:①提出“三個面向”指導(dǎo)方針;(即教育要面向現(xiàn)代化,面向世界,面向未來)1983年,當(dāng)我們國家的改革開放處在起步階段時,鄧小平同志以歷史的眼光,從戰(zhàn)略的高度,為北京景山學(xué)校題詞:“教育要面向現(xiàn)代化,面向世界,面向未來。”二十多年來,這“三個面向”的題詞所蘊(yùn)含的深刻的教育理念,已經(jīng)成為中國教育改革與發(fā)展的指針,“三個面向”的思想,已經(jīng)深入人心;成為我們教育改革的旗幟和靈魂。②改革教育制度,基礎(chǔ)、中等和高等教育全面發(fā)展;基礎(chǔ)教育——普及九年義務(wù)教育,制定《義務(wù)教育法》(2006年)中等教育——實行普通教育與職業(yè)教育并舉;高等教育——增設(shè)邊緣學(xué)科,建立學(xué)位制,擴(kuò)大自主權(quán)③實施發(fā)展高等教育的“211工程”計劃;211工程"就是面向21世紀(jì),重點(diǎn)建設(shè)100所左右的高等學(xué)校和一批重點(diǎn)學(xué)科點(diǎn)。

  • 人教版高中語文必修1《心音共鳴:寫觸動心靈的人和事》教案3篇

    人教版高中語文必修1《心音共鳴:寫觸動心靈的人和事》教案3篇

    《普通高中語文課程標(biāo)準(zhǔn)》關(guān)于“表達(dá)與交流”方面學(xué)生應(yīng)達(dá)到的目標(biāo)有如下的表述:“學(xué)會多角度地觀察生活,豐富生活經(jīng)歷和情感體驗,對自然、社會和人生有自己的感受和思考”,“進(jìn)一步提高記敘述、說明、描寫、議論、抒情等基本表達(dá)能力”。觀察、感受、思考是寫好作文的必要的積累與條件,而用最恰當(dāng)?shù)恼Z言與形式傳達(dá)自己的所得則屬于“技巧”方面的范疇。教材“表達(dá)與交流”的編選采用的“話題探討—寫法借鑒—寫作練習(xí)”的體例,其優(yōu)點(diǎn)是就某一話題訓(xùn)練某一方面的寫作能力,能使教與學(xué)具有較強(qiáng)的操作性,目標(biāo)更具體,也就是“既講‘寫什么’,又講‘怎么寫’”,能克服“純技術(shù)性訓(xùn)練”;不足在于容易造成教與學(xué)上的“只見樹木、不見森林”現(xiàn)象。要讓學(xué)生確實形成能力,舉一反三,老師的備課量非常之大,好在現(xiàn)在網(wǎng)絡(luò)發(fā)達(dá),必修1和必修2還配了教案(不知為什么必修3和必修4沒有),總算應(yīng)對過來,因此,我在此所講的教學(xué)設(shè)計之類的,有許多不是我個人的,是別人的成果,特此聲明。

  • 人教版高中歷史必修3西方人文主義思想的起源教案2篇

    人教版高中歷史必修3西方人文主義思想的起源教案2篇

    在當(dāng)時雅典的公民大會和陪審法庭上,人們常常要發(fā)表意見,要和自己的對手辯論,雅典法庭規(guī)定每個公民須替自己辯護(hù),不許旁人代辯。所以出現(xiàn)了這樣一批專門教授人辯論、演說、修辭的技巧和參政知識的職業(yè)教師。①政治因素:雅典奴隸制民主政治發(fā)展到頂峰,成為希臘政治和文化中心。參與政治生活成為每個公民生活的重要內(nèi)容②古希臘工商業(yè)發(fā)展,奴隸制經(jīng)濟(jì)繁榮(在廣大奴隸的勞動基礎(chǔ)上,古希臘的經(jīng)濟(jì)迅速發(fā)展起來,為哲學(xué)的成長提供了物質(zhì)條件)——根本原因③人的地位的提高(民主政治制度和每個公民參與政治意識的加強(qiáng),使人的中心地位日益突出)最后教師強(qiáng)調(diào):提示并強(qiáng)調(diào)學(xué)生學(xué)習(xí)時要注意理解“一定的文化是一定社會的政治和經(jīng)濟(jì)在觀念形態(tài)上的反映”。3、代表人物:普羅泰格拉4、研究領(lǐng)域:人和人類社會關(guān)注人與人之間的關(guān)系、社會組織、風(fēng)俗習(xí)慣和倫理規(guī)范

  • 人教版高中政治必修3源遠(yuǎn)流長的中華文化精品教案

    人教版高中政治必修3源遠(yuǎn)流長的中華文化精品教案

    (一)知識目標(biāo)(1)識記中華 文化源遠(yuǎn)流長的主要見證是文字和史學(xué)典籍 ,文字的作用、意義 ,史學(xué)典籍 ,中華文化的包容性。(2)說明中華文化源遠(yuǎn)流長的發(fā)展過程,是世界上唯一沒有中斷的文明 ,漢字與史學(xué)典籍是中華文化源遠(yuǎn)流長和見證,如何再創(chuàng)中華文化新的輝煌(3)分析說明中華文化源遠(yuǎn)流長,是當(dāng)今世界上唯一沒有中斷的文明(二)能力目標(biāo)通過學(xué)生課外探究、信息資源的收集整合,培養(yǎng)學(xué)生的信息素養(yǎng)、實踐能力,激發(fā)學(xué)生的生活智慧與學(xué)習(xí)智慧、時代創(chuàng)新精神與團(tuán)隊合作精神。培養(yǎng)同學(xué)們綜合思維能力,全面、辯證、歷史地分析中華文化的基本特征。培養(yǎng)同學(xué)們辯證分析能力,辨析中華文化的區(qū)域特征,說明中華文化是中國各族人民共同創(chuàng)造的;展現(xiàn)源遠(yuǎn)流長的中華文化是中華民族延續(xù)和發(fā)展的重要標(biāo)識。

  • 人教版高中語文必修3《愛的奉獻(xiàn)學(xué)習(xí)議論中的記敘》教案2篇

    人教版高中語文必修3《愛的奉獻(xiàn)學(xué)習(xí)議論中的記敘》教案2篇

    方法點(diǎn)撥教師:有的同學(xué)敘述事實論據(jù)時,不突出重點(diǎn)和精華,不注意取舍,水分太多,有許多的敘述描寫,有時還有詳細(xì)的故事情節(jié),文章幾乎成了記敘文,使文章的論點(diǎn)無法得到充分的證明,這是寫議論文的大忌。那么:議論文中的記敘有哪些特點(diǎn)?同學(xué)各抒己見。投影顯示:1.議論中的記敘不是單純的寫人記事,記敘文字是為議論服務(wù)的,其目的是為作者所闡明的道理提供事實依據(jù)。所以,在記敘時要求簡潔、概括,舍棄其中的細(xì)節(jié),僅僅交代清楚事件或者人物的概貌即可,一般不在各種描寫手段上下功夫,只要把能證明觀點(diǎn)的那個部分、側(cè)面交代清楚就行了。2.議論文中的記敘性文字不得超過總字?jǐn)?shù)的1/3,否則視為文體不當(dāng)。能力提升一、教師:了解了議論文中的記敘的特點(diǎn),接下來我們看看今天的話題:“愛的奉獻(xiàn)”,你想從哪個角度立論?有哪些素材?

上一頁123...394041424344454647484950下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動畫,PPT模板免費(fèi)下載,專注素材下載!