一、教材地位《音樂與影視藝術(shù)》是人教版高中歷史必修(III)第八專題中的第三節(jié)內(nèi)容。音樂、影視藝術(shù)屬于意識形態(tài)范疇,是當時政治、經(jīng)濟的反映,是社會進步的產(chǎn)物。19世紀以來的音樂與影視藝術(shù)糅合了近代科學技術(shù)的元素,直接引領(lǐng)著文明發(fā)展趨勢和社會風尚,滿足人們不同層次的審美需要和精神追求。音樂、影視藝術(shù)在人類日常生活中無處不在,已經(jīng)成為人們?nèi)粘I钪械闹匾M成部分,所以具有重要地位。本課分三個部分介紹了19世紀和20世紀音樂的發(fā)展與變化以及影視藝術(shù)的產(chǎn)生發(fā)展。下面我就談談對這節(jié)課的教學思路。二、教材分析1、課標要求課標的要求是:列舉19世紀以來有代表性的音樂作品,理解這些音樂作品的時代性和民族性。了解影視藝術(shù)產(chǎn)生與發(fā)展的歷程,認識其對社會生活的影響。2、教學目標根據(jù)新課標、教材內(nèi)容、學生實際,確定教學目標如下:(1)知識與能力:①列舉19世紀以來有代表性的音樂作品,理解這些音樂作品的時代性和民族性。
【情感態(tài)度及價值觀】 通過創(chuàng)設(shè)探究情境,展示典型顯示案例激發(fā)思考,與學生共同感受當前區(qū)域經(jīng)濟一體化與經(jīng)濟全球化浪潮的沖擊,以及當前我國、我省發(fā)展的機遇、成就和危機,培養(yǎng)學生的時代感和使命感。五、重點難點【重點】1、產(chǎn)業(yè)轉(zhuǎn)移的影響因素2、產(chǎn)業(yè)轉(zhuǎn)移對區(qū)域地理環(huán)境的影響【難點】1、如何從圖文材料中分析出影響產(chǎn)業(yè)轉(zhuǎn)移的主要因素2、產(chǎn)業(yè)轉(zhuǎn)移對產(chǎn)業(yè)遷出區(qū)和移入?yún)^(qū)的不同影響六、教學方法1、材料分析法。提供分層次的問題與材料,并進行方法指導,學生通過思考和討論自行分析發(fā)現(xiàn)知識、構(gòu)建知識。使不同層次的學生均有發(fā)展。這是本節(jié)設(shè)計主要采用的教學方法。2、合作探究法3、多媒體教學法七、 教學過程(一) 引入 :假如某同學買彩票中大獎,想投資生產(chǎn)面臨幾項選擇1、投資高端智能手機制造還是普通服裝廠?2、廠址選擇在濮陽市還是南樂縣?
一、情境導學我國著名數(shù)學家吳文俊先生在《數(shù)學教育現(xiàn)代化問題》中指出:“數(shù)學研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
【教學目標】知識與技能:了解我國不同等級城市的劃分,并理論聯(lián)系實際辨別現(xiàn)實社會的城市等級運用有關(guān)原理,說明不同等級城市服務范圍的差異。了解城市服務范圍與地理位置的關(guān)系。掌握不同等級城市的分布特點了解稱城市六邊形理論,并能用其解釋荷蘭圩田居民點設(shè)置問題過程與方法:通過對棗強鎮(zhèn)及上海城市等級演化分布的學習,掌握不同等級城市城市服務范圍與功能以及城市等級提高的基本條件通過對德國城市分布案例的學習,總結(jié)歸納出不同等級城市分布規(guī)律通過城市六邊形理論的學習,學會分析城市居民點布局等現(xiàn)實問題情感態(tài)度與價值觀:通過學生對我國不同等級城市(經(jīng)濟、人口、交通、服務種類)等相關(guān)資料的搜集,讓學生關(guān)心我國基本地理國情,增強熱愛祖國的情感。養(yǎng)成求真、求實的科學態(tài)度,提高地理審美情趣。
本節(jié)課標解讀:1.說明以種植業(yè)為主的農(nóng)業(yè)地域類型的形成條件及特點;2.說出商品谷物農(nóng)業(yè)的分布范圍,說明商品谷物農(nóng)業(yè)的形成條件及特點。內(nèi)容地位與作用:農(nóng)業(yè)是受自然環(huán)境影響最大的產(chǎn)業(yè)。農(nóng)業(yè)是發(fā)展歷史最悠久的產(chǎn)業(yè),隨著社會的發(fā)展和進步,社會環(huán)境對農(nóng)業(yè)的影響越來越大。以季風水田農(nóng)業(yè)為主的農(nóng)業(yè)地域類型,主要體現(xiàn)自然環(huán)境對農(nóng)業(yè)地域形成的影響;商品谷物農(nóng)業(yè)則體現(xiàn)了社會環(huán)境對農(nóng)業(yè)地域形成的影響。本節(jié)內(nèi)容包括兩部分內(nèi)容,一個是季風水田農(nóng)業(yè),主要分布在亞洲季風區(qū);一個是商品谷物農(nóng)業(yè),主要分布在發(fā)達國家。教材文字內(nèi)容不多,配備了大量的地圖和景觀圖。因此,在教學過程中要充分組織學生查閱地圖,挖掘地理信息,培養(yǎng)分析能力。分析農(nóng)業(yè)區(qū)位因素時,必須從自然因素和社會經(jīng)濟因素兩個方面去分析,找出優(yōu)勢區(qū)位因素來。
1.導入新課:通過視頻“阿根廷的潘帕斯草原”,引起學生的興趣,進而引出新的學習內(nèi)容——以畜牧業(yè)為主的農(nóng)業(yè)地域類型。2.新課講授:第一課時,首先通過展示“世界大牧場放牧業(yè)分布圖”,引出對大牧場放牧業(yè)的初步認識,了解其分布范圍;然后通過展示“潘帕斯草原的地形圖”“氣候圖”和“牧牛業(yè)景觀圖”,討論分析大牧場放牧業(yè)形成的區(qū)位條件,并進行案例分析,學習該種農(nóng)業(yè)的特點;最后,理論聯(lián)系實際,展示:“中國地形圖”“氣候圖”“人口圖”“交通圖”和“內(nèi)蒙古牧區(qū)圖”,分組討論我國內(nèi)蒙古地區(qū)能否采用潘帕斯草原大牧場放牧業(yè)的生產(chǎn)模式。第二課時,首先通過設(shè)問順利從大牧場放牧業(yè)轉(zhuǎn)入乳蓄業(yè),通過講述讓學生了解乳蓄業(yè)的概念;然后通過展示世界乳畜業(yè)分布圖,了解乳蓄業(yè)主要分布在哪些地區(qū);接著,通過西歐乳蓄業(yè)的案例分析,得到乳蓄業(yè)發(fā)展的區(qū)位因素及其特點。
1.導入新課:通過問卷調(diào)查“如果你是一名普通的工薪階層人士,要置業(yè)(買房),以下因素中,哪三個你認為是最重要的?”引出交通運輸?shù)闹匾?,引入課題交通運輸方式和布局的變化對聚落空間形態(tài)和商業(yè)網(wǎng)點布局的影響。2.新課講授:要了解通運輸方式和布局的變化對聚落空間形態(tài)的影響,就先跟學生們一起復習有關(guān)聚落的基本知識和聚落的形式和空間形態(tài)的知識。再通過讀圖分析比較交通條件對聚落空間形態(tài)影響,通過補充知識《大運河沿岸城市的興衰》來分析說明交通線的發(fā)展會帶動聚落空間形態(tài)的變化。對第二部分“對商業(yè)網(wǎng)點分布的影響”也是通過上面的順序即先對商業(yè)網(wǎng)點相關(guān)知識作一下簡要的提問,再通過具體案例分析交通條件對對商業(yè)網(wǎng)點密度,對商業(yè)網(wǎng)點位置,對集鎮(zhèn)發(fā)展的影響??偟膩碚f,這節(jié)課的教學,主要依靠具體的案例加深學生對知識的理解與掌握。
《奇偶性》內(nèi)容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標1、理解函數(shù)的奇偶性及其幾何意義;2、學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學會判斷函數(shù)的奇偶性.數(shù)學學科素養(yǎng)1.數(shù)學抽象:用數(shù)學語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學運算:運用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學建模:在具體問題情境中,運用數(shù)形結(jié)合思想,利用奇偶性解決實際問題。重點:函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點:函數(shù)奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。
《基本不等式》在人教A版高中數(shù)學第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應用的必要基礎(chǔ)。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學的嚴謹性。數(shù)學學科素養(yǎng)1.數(shù)學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數(shù)學運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.
本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學思想方法;
學生在初中學習了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學生已經(jīng)學過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學生學會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學建模:運用函數(shù)的觀點方程的根;
本章通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點個數(shù).數(shù)學學科素養(yǎng)1.數(shù)學抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質(zhì)上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應關(guān)系,這種關(guān)系常??捎煤瘮?shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數(shù)關(guān)系式,初步體會應用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學和其他學科中的重要性. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關(guān)系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學運算:結(jié)合函數(shù)圖象或其單調(diào)性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學建模:在具體問題情境中,運用數(shù)形結(jié)合思想,將自然語言用數(shù)學表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.
本節(jié)課是在學習了三角函數(shù)圖象和性質(zhì)的前提下來學習三角函數(shù)模型的簡單應用,進一步突出函數(shù)來源于生活應用于生活的思想,讓學生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學“建?!彼枷?從而培養(yǎng)學生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學學科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學關(guān)系來建立數(shù)學模型; 3.數(shù)學運算:實際問題求解; 4.數(shù)學建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學建模思想,提高學生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.
本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉(zhuǎn)化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.
本節(jié)課在已學冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的增長方式存在很大差異.事實上,這種差異正是不同類型現(xiàn)實問題具有不同增長規(guī)律的反應.而本節(jié)課重在研究不同函數(shù)增長的差異.課程目標1.掌握常見增長函數(shù)的定義、圖象、性質(zhì),并體會其增長的快慢.2.理解直線上升、對數(shù)增長、指數(shù)爆炸的含義以及三種函數(shù)模型的性質(zhì)的比較,培養(yǎng)數(shù)學建模和數(shù)學運算等核心素養(yǎng).數(shù)學學科素養(yǎng)1.數(shù)學抽象:常見增長函數(shù)的定義、圖象、性質(zhì);2.邏輯推理:三種函數(shù)的增長速度比較;3.數(shù)學運算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù);5.數(shù)學建模:通過由抽象到具體,由具體到一般的數(shù)形結(jié)合思想總結(jié)函數(shù)性質(zhì).重點:比較函數(shù)值得大?。浑y點:幾種增長函數(shù)模型的應用.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。