一、教學(xué)內(nèi)容:兩位數(shù)減一位數(shù)和整十?dāng)?shù)(不退位)(課本第67頁(yè))。二、教學(xué)目標(biāo):1、知識(shí)與技能:讓學(xué)生經(jīng)歷探索兩位數(shù)減一位數(shù)和整十?dāng)?shù)(不退位)的計(jì)算方法的過(guò)程,掌握計(jì)算方法,能正確地口算。2、過(guò)程與方法:讓學(xué)生經(jīng)歷自主探索、動(dòng)手操作、合作交流等方式獲得新知的過(guò)程,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體會(huì)數(shù)學(xué)知識(shí)與日常生活的密切聯(lián)系,增強(qiáng)應(yīng)用意識(shí)。3、情感態(tài)度與價(jià)值觀:進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,以及積極思考、動(dòng)手實(shí)踐并與同學(xué)合作學(xué)習(xí)的態(tài)度。三、教學(xué)重點(diǎn):掌握兩位數(shù)減一位數(shù)和整十?dāng)?shù)(不退位)的口算方法。四、教學(xué)難點(diǎn):理解算理,把握兩位數(shù)減一位數(shù)與兩位數(shù)減整十位數(shù)在計(jì)算過(guò)程中的相同點(diǎn)與不同點(diǎn)。五、教具準(zhǔn)備:課件、題卡、等。六、教學(xué)過(guò)程:(一)、創(chuàng)設(shè)情境,提出問(wèn)題。
A.城鎮(zhèn)數(shù)量猛增B.城市規(guī)模不斷擴(kuò)大【設(shè)計(jì)意圖】通過(guò)讀圖的對(duì)比分析,提高學(xué)生提取信息以及對(duì)比分析問(wèn)題的能力,通過(guò)小組之間的討論,培養(yǎng)合作能力。五、課堂小結(jié)和布置作業(yè)關(guān)于課堂小結(jié),我打算讓學(xué)生自己來(lái)總結(jié),你這節(jié)課學(xué)到了什么。這樣既可以提高學(xué)生的總結(jié)概括能力,也可以讓我在第一時(shí)間內(nèi)獲得它們的學(xué)習(xí)反饋。(本節(jié)課主要學(xué)習(xí)了珠三角的位置和范圍以及改革開(kāi)放以來(lái)珠三角地區(qū)工業(yè)化和城市化的發(fā)展。)關(guān)于作業(yè)的布置,我打算采用分層次布置作業(yè)法。第一個(gè)層次的作業(yè)是基礎(chǔ)作業(yè),要求每一位同學(xué)都掌握,第二個(gè)層次的作業(yè)是彈性作業(yè),學(xué)生可以根據(jù)自己的情況來(lái)選做。整個(gè)這堂課,老師只是作為一個(gè)引導(dǎo)者、組織者的角色,學(xué)生才是課堂上真正的主人,是自我意義的建構(gòu)者和知識(shí)的生成者,被動(dòng)的、復(fù)制式的課堂將離我們遠(yuǎn)去。
(3)師生討論,提升思維深度。教師引領(lǐng)學(xué)生將討論由農(nóng)業(yè)生態(tài)破壞、土地利用不合理等表象問(wèn)題逐步深入到農(nóng)業(yè)結(jié)構(gòu)不合理、農(nóng)業(yè)技術(shù)落后等深層問(wèn)題,提升了學(xué)生思維的深度。(4)角色體驗(yàn),突破難點(diǎn)落實(shí)重點(diǎn)。在農(nóng)民與保護(hù)區(qū)工作人員的角色體驗(yàn)活動(dòng)中,學(xué)生們嘗試換位思考,在沖突與交鋒中,在教師的引領(lǐng)下,重新認(rèn)識(shí)環(huán)境保護(hù)與區(qū)域經(jīng)濟(jì)發(fā)展的關(guān)系,在情感體驗(yàn)中加深對(duì)可持續(xù)發(fā)展內(nèi)涵的理解,小沖突凸顯大矛盾是本課設(shè)計(jì)的創(chuàng)新之處。2.注重對(duì)地理問(wèn)題的探究,突出地理學(xué)科本質(zhì)。地理學(xué)科具有綜合性、區(qū)域性特征,區(qū)域差異及人地和諧發(fā)展觀是我們?cè)诮虒W(xué)中應(yīng)該把握的基本特征,也是我們應(yīng)當(dāng)把握的地理學(xué)科的本質(zhì)特征,因此在本節(jié)課的設(shè)計(jì)中我注重抓住地理事物的空間特征、綜合性特征,以突出地理學(xué)科的本質(zhì)。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個(gè)95)影響較大,使平均數(shù)在估計(jì)總體時(shí)可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來(lái)估計(jì)每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點(diǎn);(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個(gè)小矩形的面積與小矩形底邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識(shí)點(diǎn),教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識(shí)點(diǎn),并能夠靈活運(yùn)用。
知識(shí)探究(一):普查與抽查像人口普查這樣,對(duì)每一個(gè)調(diào)查調(diào)查對(duì)象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個(gè)調(diào)查中,我們把調(diào)查對(duì)象的全體稱為總體,組成總體的每一個(gè)調(diào)查對(duì)象稱為個(gè)體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對(duì)象的某些指標(biāo)的全體作為總體,每一個(gè)調(diào)查對(duì)象的相應(yīng)指標(biāo)作為個(gè)體。問(wèn)題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財(cái)力、物力,因而不宜經(jīng)常進(jìn)行。為了及時(shí)掌握全國(guó)人口變動(dòng)狀況,我國(guó)每年還會(huì)進(jìn)行一次人口變動(dòng)情況的調(diào)查,根據(jù)抽取的居民情況來(lái)推斷總體的人口變動(dòng)情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,并以此為依據(jù)對(duì)總體的情況作出估計(jì)和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個(gè)體稱為樣本,樣本中包含的個(gè)體數(shù)稱為樣本量。
想一想:為什么在師生猜拳中老師一直說(shuō)“5”能贏?為什么選擇和多的那隊(duì)沒(méi)勝,而選擇和少的那隊(duì)卻勝了?選擇可能性大的是不是每次一定能贏?選擇可能性小是不是每一次一定都輸?(至此,本節(jié)課到了一個(gè)升華層次,學(xué)生通過(guò)互動(dòng)游戲、自主探究、討論分析,從而揭示了“猜拳游戲”中的秘密,對(duì)“可能性”的理解達(dá)到了一個(gè)更高水平,有效地完成了本課重難點(diǎn)教學(xué)。)(4)實(shí)踐驗(yàn)證。實(shí)踐驗(yàn)證理論。再一次組織學(xué)生有目的地猜和,進(jìn)行實(shí)踐驗(yàn)證。讓理論與實(shí)踐有機(jī)的結(jié)合(三)拓展創(chuàng)新,內(nèi)化提升。兒童用品商店將要舉行促銷活動(dòng),凡到商店購(gòu)物的顧客都可參加《轉(zhuǎn)盤轉(zhuǎn)轉(zhuǎn)樂(lè)》活動(dòng)。每位顧客可轉(zhuǎn)兩次,用兩次指針?biāo)笖?shù)相加得到一個(gè)和,不同的和能得到相應(yīng)的獎(jiǎng)項(xiàng)。
8、小結(jié):不管因數(shù)中間是否有0,都要用這個(gè)一位數(shù)去乘多位數(shù)里每一個(gè)數(shù)位上的數(shù),即使十位上是0也要乘。這就是今天我們學(xué)習(xí)的新知識(shí),因數(shù)中間有0的乘法。(板題:因數(shù)中間有0的乘法)[設(shè)計(jì)意圖:通過(guò)學(xué)生的自主探索,獲得對(duì)“0和一個(gè)數(shù)相乘得0”的理性認(rèn)識(shí)的基礎(chǔ)上,進(jìn)一步運(yùn)用估算、口算以及學(xué)過(guò)的筆算方法上算法上進(jìn)行探索,中間有0的三位數(shù)都是接近整百的數(shù),這為學(xué)生運(yùn)用估算提供了很好的機(jī)會(huì)。通過(guò)估算,能使學(xué)生對(duì)筆算結(jié)果有一個(gè)大致的把握,從而可以在很大程度上減少筆算中錯(cuò)誤的發(fā)生,通過(guò)教學(xué),努力使學(xué)生感受到:把估算和筆算結(jié)合起來(lái),可以提高計(jì)算的正確率。逐步培養(yǎng)學(xué)生在筆算時(shí)自覺(jué)進(jìn)行估算的意識(shí)。]三.鞏固練習(xí)談話:現(xiàn)在正是小朋友們長(zhǎng)身體的時(shí)候,所以我們一定要參加體育鍛煉呦!今天,我們一起去參加一個(gè)智力長(zhǎng)跑,好嗎?
(2)請(qǐng)你思考:師:這樣就需要設(shè)計(jì)一張其他面值的郵票,如果最高的資費(fèi)是6元,那么用3張郵票來(lái)支付時(shí),面值對(duì)大的郵票是幾元?可增加什么面值的郵票?(學(xué)生分組討論設(shè)計(jì)思考)生:6元除以3元就是2元,可增加的郵票面值可為2.0元,2.4元或4.0元。(3)小結(jié):雖然滿足條件的郵票組合很多,但郵政部門在發(fā)行郵票時(shí),還要從經(jīng)濟(jì)、合理等角度考慮?!驹O(shè)計(jì)意圖:大膽放手,讓學(xué)生參與數(shù)學(xué)活動(dòng)。讓學(xué)生成為課堂的主體,讓他們?cè)趧?dòng)手、動(dòng)腦、動(dòng)口的過(guò)程中學(xué)到知識(shí)和思維的方法,知識(shí)的獲得和學(xué)習(xí)方法的形成都是在學(xué)生“做”的過(guò)程中形成的?!克摹㈧柟躺罨?、如果小明的爸爸要給小明回一封不足20g的信,他該貼多少錢的郵票?2、如果小明的好朋友要寄一封39g的信,他該貼多少錢的郵票?五、課后實(shí)踐:課后給你的親戚或者好朋友寄封信。
8、板書(shū)裝在套子里的人別里科夫的形象——有形的套子套己——無(wú)形的套子套人第二課時(shí)合作探究:目標(biāo)挖掘主題及現(xiàn)實(shí)意義。問(wèn)題設(shè)置,銜接上節(jié)課內(nèi)容,層層深入。1、結(jié)合上節(jié)課別里科夫的形象分析:他的思想被什么套住,其悲劇原因在哪?(根據(jù)人物形象的分析與社會(huì)背景的了解,直擊主題。)沙皇腐朽的專制統(tǒng)治套住了他的思想,沙皇的清規(guī)戒律使他不敢越雷池一步,所以他是受害者,但他的身份性格以及特定的社會(huì)環(huán)境,又讓他成為沙皇統(tǒng)治的捍衛(wèi)者。2、他戀愛(ài)的情節(jié)以及科瓦連科這兩個(gè)人物的塑造的意義?(從人物以及主題入手,推翻沙皇的腐朽反動(dòng)的統(tǒng)治,必須是每一個(gè)人都敢于打破套子,喚醒革新,更新觀念,拒絕腐朽。)別里科夫渴望打破束縛,也想革新,而科瓦連科兩個(gè)人物體現(xiàn)朝氣活潑,以及勇于打破常規(guī)束縛的勇氣,為革新升起了一片曙光。3、塑造別里科夫的手法,除了一般刻畫(huà)人物方法外,還有什么方法?
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對(duì)復(fù)數(shù)的拓展延伸,這樣更有利于我們對(duì)復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問(wèn)題;2.邏輯推理:通過(guò)課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問(wèn)題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過(guò)經(jīng)歷提出問(wèn)題—推導(dǎo)過(guò)程—得出結(jié)論—例題講解—練習(xí)鞏固的過(guò)程,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:?jiǎn)栴}一:你還記得復(fù)數(shù)的幾何意義嗎?問(wèn)題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來(lái)表示復(fù)數(shù)呢?如何表示?
問(wèn)題二:上述問(wèn)題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績(jī)存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫(huà)了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績(jī)波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說(shuō),極差度量出的差異誤差較大。問(wèn)題三:你還能想出其他刻畫(huà)數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績(jī)很穩(wěn)定,那么大多數(shù)的射擊成績(jī)離平均成績(jī)不會(huì)太遠(yuǎn);相反,如果射擊的成績(jī)波動(dòng)幅度很大,那么大多數(shù)的射擊成績(jī)離平均成績(jī)會(huì)比較遠(yuǎn)。因此,我們可以通過(guò)這兩組射擊成績(jī)與它們的平均成績(jī)的“平均距離”來(lái)度量成績(jī)的波動(dòng)幅度。
新知探究:向量的減法運(yùn)算定義問(wèn)題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來(lái)進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問(wèn)題六:根據(jù)問(wèn)題五,思考一下向量減法的幾何意義是什么?問(wèn)題七:非零共線向量怎樣做減法運(yùn)算? 問(wèn)題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
可以通過(guò)下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過(guò)的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹(shù)人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡(jiǎn)稱古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過(guò)點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說(shuō)明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過(guò)交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫(huà)圖說(shuō)明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
問(wèn)題導(dǎo)入:?jiǎn)栴}一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問(wèn)題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問(wèn)題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒(méi)有其他差異。
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開(kāi)圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來(lái)解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開(kāi)圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長(zhǎng)為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過(guò)實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
教材分析異分母分?jǐn)?shù)加減法是第十冊(cè)第五單元的一個(gè)學(xué)習(xí)內(nèi)容。在這個(gè)內(nèi)容之前,學(xué)生已掌握了分?jǐn)?shù)的基本性質(zhì),學(xué)會(huì)了約分、通分、分?jǐn)?shù)小數(shù)互化的方法,懂得了同分母分?jǐn)?shù)加減法的算理,其中同分母分?jǐn)?shù)加減法的計(jì)算方法是本節(jié)課最直接的知識(shí)起點(diǎn)。本節(jié)課的內(nèi)容又是進(jìn)一步學(xué)習(xí)分?jǐn)?shù)加減法混合運(yùn)算的基礎(chǔ),同時(shí)又是本單元的重點(diǎn)。五年級(jí)學(xué)生已經(jīng)能理解只有分?jǐn)?shù)單位相同的分?jǐn)?shù)才能相加減的算理,并且已經(jīng)初步具有用舊知識(shí)解決新問(wèn)題的能力,也就是具有了一定的知識(shí)遷移能力。教學(xué)目標(biāo):1、理解異分母分?jǐn)?shù)加減法的算理,并能正確計(jì)算。2、運(yùn)用類比遷移的方法探索新知,培養(yǎng)推理能力和概括能力。3、滲透轉(zhuǎn)化的數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)知識(shí)的探索性。教學(xué)重點(diǎn):掌握異分母分?jǐn)?shù)加減法的計(jì)算方法。教學(xué)難點(diǎn):理解先通分,再加減的算理。教學(xué)流程:一、鋪墊。
1、說(shuō)課內(nèi)容:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(人教版)五年級(jí)下冊(cè)第69頁(yè)例1、例2。2、教材地位及作用:學(xué)生在三年級(jí)已初步認(rèn)識(shí)分?jǐn)?shù),但那時(shí)所學(xué)的分?jǐn)?shù)都是分子小于分母的分?jǐn)?shù),所以,學(xué)習(xí)這節(jié)內(nèi)容,使學(xué)生比較全面地理解分?jǐn)?shù)概念與培養(yǎng)對(duì)分?jǐn)?shù)的數(shù)感,起著重要的作用。3、教學(xué)目標(biāo)的確定:當(dāng)今時(shí)代是經(jīng)濟(jì)全球化,文化多元化,社會(huì)信息化的時(shí)代,所以教育也要追隨時(shí)代發(fā)展的步伐。遵循課標(biāo)提出的“為了每一位學(xué)生的發(fā)展”教育理念,確定本課教學(xué)目標(biāo)如下:①使學(xué)生理解真分?jǐn)?shù)和假分?jǐn)?shù)的意義;②通過(guò)學(xué)習(xí)真分?jǐn)?shù)、假分?jǐn)?shù),加深學(xué)生對(duì)分?jǐn)?shù)意義的理解;③使學(xué)生掌握真分?jǐn)?shù),假分?jǐn)?shù)的特征;④培養(yǎng)學(xué)生的觀察、比較、分析及概括的能力;⑤使學(xué)生在思考中、討論中,體會(huì)學(xué)習(xí)數(shù)學(xué)的快樂(lè),體驗(yàn)成功的喜悅。4、教學(xué)重點(diǎn)、難點(diǎn):
2、說(shuō)說(shuō)下面每個(gè)百分?jǐn)?shù)的具體含義,是怎么求出來(lái)的?(哪兩個(gè)數(shù)相比,把誰(shuí)看作單位“1”)(1)某種菜籽的出油率是36%。(2)實(shí)際用電量占計(jì)劃用電量的80%。(3)李家今年荔枝產(chǎn)量是去年的120%。二、新授1、根據(jù)數(shù)學(xué)信息提出問(wèn)題:出示例2的情境圖,讓學(xué)生根據(jù)圖中提供的條件提出用百分?jǐn)?shù)解決的問(wèn)題。(1)計(jì)劃造林是實(shí)際造林的百分之幾?(2)實(shí)際造林是計(jì)劃造林的百分之幾?(3)實(shí)際造林比計(jì)劃造林增加百分之幾?(4)計(jì)劃早林比實(shí)際造林少百分之幾?2、讓學(xué)生先解決前兩個(gè)問(wèn)提。解決這類問(wèn)題要先弄清楚哪兩個(gè)數(shù)相比,哪個(gè)數(shù)是單位“1”,哪一個(gè)數(shù)與單位“1”相比。3、學(xué)生自主解決“實(shí)際早林比計(jì)劃增加了百分之幾”的問(wèn)題。(1)分析數(shù)量關(guān)系,讓學(xué)生自己嘗試著用線段圖表示出來(lái)。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。