提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中政治必修1第九課走進社會主義市場經(jīng)濟教案

  • 人教版高中地理必修3區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展—以我國東北地區(qū)為例說課稿

    人教版高中地理必修3區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展—以我國東北地區(qū)為例說課稿

    (3)師生討論,提升思維深度。教師引領(lǐng)學(xué)生將討論由農(nóng)業(yè)生態(tài)破壞、土地利用不合理等表象問題逐步深入到農(nóng)業(yè)結(jié)構(gòu)不合理、農(nóng)業(yè)技術(shù)落后等深層問題,提升了學(xué)生思維的深度。(4)角色體驗,突破難點落實重點。在農(nóng)民與保護區(qū)工作人員的角色體驗活動中,學(xué)生們嘗試換位思考,在沖突與交鋒中,在教師的引領(lǐng)下,重新認(rèn)識環(huán)境保護與區(qū)域經(jīng)濟發(fā)展的關(guān)系,在情感體驗中加深對可持續(xù)發(fā)展內(nèi)涵的理解,小沖突凸顯大矛盾是本課設(shè)計的創(chuàng)新之處。2.注重對地理問題的探究,突出地理學(xué)科本質(zhì)。地理學(xué)科具有綜合性、區(qū)域性特征,區(qū)域差異及人地和諧發(fā)展觀是我們在教學(xué)中應(yīng)該把握的基本特征,也是我們應(yīng)當(dāng)把握的地理學(xué)科的本質(zhì)特征,因此在本節(jié)課的設(shè)計中我注重抓住地理事物的空間特征、綜合性特征,以突出地理學(xué)科的本質(zhì)。

  • 人教版高中地理必修3資源的跨區(qū)域調(diào)配—以我國的西氣東輸為例說課稿

    人教版高中地理必修3資源的跨區(qū)域調(diào)配—以我國的西氣東輸為例說課稿

    由于這部分知識已要求學(xué)生在課前收集相關(guān)資料探討分析,,現(xiàn)在提供機會讓他們進行交流,充分發(fā)表各自的見解。所以,學(xué)生對這個知識掌握起來并不難。所以,我對這部分內(nèi)容不做太多的講解,只要做進一步的梳理,加深學(xué)生的理解即可。 第三是小結(jié)環(huán)節(jié) 在學(xué)生對西氣東輸工程的原因掌握之后進入的是小結(jié)環(huán)節(jié),這里我進一步提出問題:在西氣東輸工程段的建設(shè)中有沒有什么難關(guān)? 通過西氣東輸?shù)碾y度了解,間接的表現(xiàn)我國的科技的發(fā)展,增加學(xué)生的愛國情,同時也說明西氣東輸?shù)慕ǔ梢灿屑夹g(shù)這一原因。從而也完成了本課時的小結(jié)。 第四環(huán)節(jié)是作業(yè)布置 在這里要求學(xué)生課后預(yù)習(xí)本課剩下的內(nèi)容:思考西氣東輸對區(qū)域發(fā)展的影響以及為何要實施資源的跨區(qū)域調(diào)配。通過這樣的問題一方面為下節(jié)課學(xué)習(xí)奠定基礎(chǔ),另一方面體現(xiàn)本課學(xué)習(xí)從“個”到“類”從特殊到一般的過程。

  • 第九周國旗下講話稿:《創(chuàng)新是永恒的推動力》

    第九周國旗下講話稿:《創(chuàng)新是永恒的推動力》

    10月17日,“神舟”載著景海鵬、陳冬兩位航天員在酒泉衛(wèi)星發(fā)射中心順利升空,19日,與“天宮二號”完成交會對接任務(wù)。我泱泱華夏大國已高高屹立與世界航空航天之林。那升空的不只是火箭,更是偉大的航天夢,中國夢;那對接的不只是太空艙,更是中國與世界、世界與宇宙;那遨游太空的,也不只是兩位宇航員,更是一種創(chuàng)新的精神、科技的力量!中國不是第一個邁入太空的國家,早在上世紀(jì)五六十年代,蘇聯(lián)就領(lǐng)先于世界進入太空,繼而是美國。雖然位列第三,中國確實發(fā)展最迅速,也是后蓄力量最勢不可擋的。從一開始借助美國、蘇聯(lián)的技術(shù)支持,到后來的獨立自主,再到后來,美國在航天界屢遭挫敗、停滯不前,而中國立下了多座豐碑。究其根本,想必是科技創(chuàng)新的力量。我國航天事業(yè)取得成就于創(chuàng)新。早在1956年,我國就提出了“十二年內(nèi)完成航空事業(yè)獨立自主”的目標(biāo),幾十年如一日的探索中我國航天工作者汲取歐美國家經(jīng)驗的同時,根據(jù)本國需要,開拓創(chuàng)新,終于收獲今日之成就。若只是照搬技術(shù),可能也會發(fā)生類似美國“阿波羅號”的慘劇吧!

  • 《登高》說課稿(一) 統(tǒng)編版高中語文必修上冊

    《登高》說課稿(一) 統(tǒng)編版高中語文必修上冊

    學(xué)生借助對對聯(lián)的賞析,回味杜甫窮年漂泊的一生,體會杜甫作為一個深受儒家思想影響的讀書人,忠君念闕,心系蒼生的偉大情懷。(這一設(shè)計理念源于孟子所云:“誦其文,讀其詩,不知其人,可乎?是以論其世也?!敝苏撌朗氰b賞詩歌的第一步 )(二)研讀課文1、初讀,朗讀吟誦,感知韻律美。要求學(xué)生讀準(zhǔn)字音,讀懂句意,體會律詩的節(jié)奏、押韻的順暢之美。2、再讀,披詞入情,感受感情美。讓學(xué)生用一個字概括這首詩的情感內(nèi)容。(此教學(xué)設(shè)計是從新課標(biāo)要求的文學(xué)作品應(yīng)先整體感知,培養(yǎng)學(xué)生歸納推理的邏輯思維能力出發(fā)進行的設(shè)計。)其答案是一個“悲”字,由此輻射出兩個問題:詩人因何而“悲”?如何寫“悲”?(此問題設(shè)計順勢而出,目的在于培養(yǎng)學(xué)生探究問題的能力。)

  • 《促織》說課稿2020-2021學(xué)年統(tǒng)編版高中語文必修下冊

    《促織》說課稿2020-2021學(xué)年統(tǒng)編版高中語文必修下冊

    蒲松齡(1640——1715)字留仙,一字劍臣,號柳泉居士。山東淄川(今淄博)人。清代小說家,出身于沒落地主家庭。天資聰明,學(xué)問深厚,十九歲時連中縣、府、道三個第一,但此后屢應(yīng)省試不第,年七十一,始被補上歲貢生,一生憂郁自傷,窮愁潦倒。從二十歲左右開始寫作,歷時二十余年,創(chuàng)作了文言短篇小說集《聊齋志異》。另有詩、文集《聊齋詩集》、《聊齋文集》?!读凝S志異》是蒲松齡傾力創(chuàng)作的文言短篇小說集?!傲凝S”是作者的書齋名?!爸井悺本褪怯浭龌ㄑ砑捌渌恍┗恼Q不經(jīng)的奇聞軼事。作者巧妙地通過這些離經(jīng)虛幻的故事,大膽地揭露社會多方面的黑暗現(xiàn)實,贊美了青年男女敢于沖破封建禮教樊籬的精神,抒發(fā)了作者自己滿腔的“孤憤”。郭沫若曾題蒲松齡故居聯(lián):“寫鬼寫妖,高人一等;刺貪刺虐,入木三分?!崩仙犷}聯(lián):“鬼狐有性格,笑罵成文章?!焙喢鞫鷦拥氐莱隽恕读凝S志異》的文學(xué)特點。

  • 空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    ∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點坐標(biāo)為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個焦點的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認(rèn)識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認(rèn)識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個“圓錐曲線方程”一章,是學(xué)生應(yīng)重點掌握的基本數(shù)學(xué)方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進行教學(xué)

  • 雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為

  • 橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.

  • 古詩詞誦讀《將進酒》說課稿2021-2022學(xué)年高中語文統(tǒng)編版選擇性必修上冊

    古詩詞誦讀《將進酒》說課稿2021-2022學(xué)年高中語文統(tǒng)編版選擇性必修上冊

    一、說教材選修課是在必修課程基礎(chǔ)上的拓展與提高,它力爭促進學(xué)生各自特長和個性的形成。我們在必修部分已經(jīng)學(xué)習(xí)了李白的一首古風(fēng)《蜀道難》,學(xué)生對李白其人及其詩風(fēng)已有了一定的了解。本單元的任務(wù)是“因聲求氣,吟詠詩韻”,它要求我們通過對古典詩歌聲律特點的把握,學(xué)習(xí)有感情地吟詠,誦讀作品,并深入地了解詩歌的感情?!秾⑦M酒》一詩時而奔放,時而深沉,感情大起大落變化明顯,學(xué)生容易進入吟詠和體會情感的體驗閱讀中。二、說教法學(xué)法現(xiàn)代語文觀念中提倡語文教學(xué)要多讀,要培養(yǎng)學(xué)生的語感,特別是對一些優(yōu)秀的古詩文。可見在學(xué)習(xí)古代詩文的過程中,誦讀是非常重要的,有助于加深學(xué)生對課文思想內(nèi)容的理解??梢栽诶首x中理解詩文的內(nèi)容,所謂“讀書百遍其義自見”,在反復(fù)的朗讀中可以慢慢體會詩人所要表達的思想感情,因此本堂課我采取以誦讀為線索,完成對詩歌思想內(nèi)容的理性思考。

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(2)

    【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識及解題技巧

  • 《裝在套子里的人》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊

    《裝在套子里的人》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊

    8、板書裝在套子里的人別里科夫的形象——有形的套子套己——無形的套子套人第二課時合作探究:目標(biāo)挖掘主題及現(xiàn)實意義。問題設(shè)置,銜接上節(jié)課內(nèi)容,層層深入。1、結(jié)合上節(jié)課別里科夫的形象分析:他的思想被什么套住,其悲劇原因在哪?(根據(jù)人物形象的分析與社會背景的了解,直擊主題。)沙皇腐朽的專制統(tǒng)治套住了他的思想,沙皇的清規(guī)戒律使他不敢越雷池一步,所以他是受害者,但他的身份性格以及特定的社會環(huán)境,又讓他成為沙皇統(tǒng)治的捍衛(wèi)者。2、他戀愛的情節(jié)以及科瓦連科這兩個人物的塑造的意義?(從人物以及主題入手,推翻沙皇的腐朽反動的統(tǒng)治,必須是每一個人都敢于打破套子,喚醒革新,更新觀念,拒絕腐朽。)別里科夫渴望打破束縛,也想革新,而科瓦連科兩個人物體現(xiàn)朝氣活潑,以及勇于打破常規(guī)束縛的勇氣,為革新升起了一片曙光。3、塑造別里科夫的手法,除了一般刻畫人物方法外,還有什么方法?

  • 人教A版高中數(shù)學(xué)必修二總體集中趨勢的估計教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二總體集中趨勢的估計教學(xué)設(shè)計

    (2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點,教師補充。 讓學(xué)生掌握本節(jié)課知識點,并能夠靈活運用。

  • 人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?

  • 人教A版高中數(shù)學(xué)必修二總體離散程度的估計教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二總體離散程度的估計教學(xué)設(shè)計

    問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。

  • 人教A版高中數(shù)學(xué)必修二總體取值規(guī)律的估計教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二總體取值規(guī)律的估計教學(xué)設(shè)計

    可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。

  • 人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(2)

    本節(jié)通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運算:解答數(shù)學(xué)問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.

上一頁123...484950515253545556575859下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!