氣候變化對健康的影響 氣候變化對人體健康的不良影響是不難發(fā)現(xiàn)的:熱浪沖擊頻繁加重可致死亡率及某些疾病、特別是心臟呼吸系統(tǒng)疾病發(fā)病率增加;對氣候變化敏感的傳染性疾病如瘧疾和登革熱的傳播范圍可能增加。極端氣候事件, 如干旱、水災(zāi)、暴風(fēng)雨等, 使死亡率、傷殘率及傳染病疾病率上升, 并增加社會心理壓力。某些媒介疾病的加重也可能與氣候變化有間接的關(guān)系, 如瘧疾是通過蚊子傳播的疾病,氣候變化可能使某些變暖地區(qū)的蚊子數(shù)目增加, 從而加重了瘧疾的發(fā)生。我國1994年瘧疾的發(fā)病率為5.3408/10萬, 居全國法定傳染病的第六位。血吸蟲病的發(fā)展與高溫及灌溉系統(tǒng)的擴(kuò)增有關(guān)。我國1994年南方12省市血吸蟲病患者的檢出率高達(dá)3.67%,不能忽視氣候變化對此的可能影響。還有一些疾病,如睡眠病、登革熱、黑熱病等也有與氣候關(guān)系的報道。另外, CO2、一些空氣污染物如氮氧化物、臭氧等可增加過敏疾患及心臟呼吸系統(tǒng)疾病和死亡。
導(dǎo)語在必修第一冊中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識,定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進(jìn)一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內(nèi)的平均速度v ?近似的描述它的運動狀態(tài)。
一、教材分析 《認(rèn)識運動 把握規(guī)律》是人教版高中政治必修四第4章第2框的教學(xué)內(nèi)容,主要學(xué)習(xí)運動和規(guī)律二、教學(xué)目標(biāo)1.知識目標(biāo):運動的含義、相對靜止的含義、規(guī)律的含義、物質(zhì)和運動的辨證關(guān)系、運動和靜止的辨證關(guān)系2.能力目標(biāo): 鍛煉學(xué)生理論聯(lián)系實際的能力,培養(yǎng)學(xué)生正確認(rèn)識世界本質(zhì),并能夠自覺按照客觀規(guī)律辦事的能力3.情感、態(tài)度和價值觀目標(biāo):通過學(xué)習(xí)運動和靜止的辨證關(guān)系,使學(xué)生懂得辨證唯物主義在承認(rèn)運動絕對性的同時還承認(rèn)相對靜止的重要作用,從而承認(rèn)世界是可知的,在生活、學(xué)習(xí)和工作中增強(qiáng)認(rèn)識世界和改造世界的勇氣和信心,反對離開相對靜止談運動,避免形而上學(xué)的相對主義和詭辯論的錯誤三、教學(xué)重點難點規(guī)律的客觀性四、學(xué)情分析本框題的內(nèi)容比較抽象,不易理解,所以講解時需要詳細(xì)。教師指導(dǎo)學(xué)生借助生活中的一些常識來學(xué)習(xí)本課內(nèi)容
為城市居民提供休養(yǎng)生息的場所,是城市最基本的功能區(qū).城市中最為廣泛的土地利用方式就是住宅用地.一般住宅區(qū)占據(jù)城市空間的40%—60%。(閱讀圖2.3)請同學(xué)講解高級住宅區(qū)與低級住宅區(qū)的差別(學(xué)生答)(教師總結(jié))(教師講解)另外還有行政區(qū)、文化區(qū)等。而在中小城市,這些部門占地面積很小,或者布局分散,形成不了相應(yīng)的功能 區(qū)。(教師提問)我們把城市功能區(qū)分了好幾種,比如說住宅區(qū),是不是土地都是被居住地占據(jù)呢?是不是就沒有其他的功能了呢?(學(xué)生回答)不是(教師總結(jié))不是的。我們說的住宅區(qū)只是在占地面積上,它是占絕大多數(shù),但還是有土地是被其它功能占據(jù)的,比如說住宅區(qū)里的商店、綠化等也要占據(jù)一定的土地, 只是占的比例比較小而已。下面請看書上的活動題。
(分析:北京的商業(yè)中心分布和變化大致分三個階段:鐘鼓樓市場、三足鼎立格局形成、環(huán)路沿線商業(yè)中心出現(xiàn)。相對應(yīng)的交通變化,鐘鼓樓市場衰退與大運河運輸?shù)匚凰ヂ?、運輸方式的變化密切相關(guān),后兩個階段與城市交通干線形態(tài)變化緊密聯(lián)系)。〔承轉(zhuǎn)〕商業(yè)中心的發(fā)展是隨著交通的發(fā)展而變化的,集鎮(zhèn)也是在交通要道上發(fā)展起來 的。(3)對集鎮(zhèn)發(fā)展的影響〔舉例說明〕陜西省勉縣的長林鎮(zhèn),過去地處漢中經(jīng)褒河去甘肅、四川的必經(jīng)之路,來往客商眾多,商業(yè)十分繁榮。后來由于改線,集鎮(zhèn)逐漸衰落,至今連定期的集市貿(mào)易都沒有了,完全退化為單純的居民點。以及運河沿線城鎮(zhèn)如山東等的興衰,亦可說明交通線的改變對聚落的影響?!部偨Y(jié)〕交通線路的改變常會引起集鎮(zhèn)的繁榮或衰落。
(2)修建通向西藏的鐵路,要克服哪些自然障礙?①凍土的季節(jié)凍融作用使路基不穩(wěn)固,也使修路技術(shù)難度大,成本高②生態(tài)脆弱,植被破壞后難以修復(fù)③高原缺氧,使施工困難④廣布的荒漠,多山的地形都使建設(shè)難度加大(3)結(jié)合初中所學(xué)知識分析,未來穿行于青藏高原鐵路運輸線上的貨車中主要運輸?shù)呢浳镉心男恳喳}湖中礦物為原料的化工產(chǎn)品,有色金屬及其加工產(chǎn)品,畜產(chǎn)品及外省運入的各種工業(yè)品等?!究偨Y(jié)新課】交通運輸網(wǎng)的基本要素包括:交通線(鐵路、公路、航道、管道)和交通點(港口、車站、航空港);運輸網(wǎng)有單一和綜合運輸網(wǎng)二種形式。分國家級、省級和大區(qū)級三個層次。交通運輸網(wǎng)的點線布局受經(jīng)濟(jì)、社會、技術(shù)和自然等因素的影響?!菊n后作業(yè)】:完成高一地理第二冊填圖冊 第五章第一節(jié)
知識目標(biāo)1.了解傳統(tǒng)工業(yè)區(qū)的分布、條件和工業(yè)部門。2.掌握傳統(tǒng)的魯爾工業(yè)區(qū)優(yōu)越的區(qū)位條件,了解它的衰落原因及其綜合整治途徑。能力目標(biāo)1.讀圖分析礦產(chǎn)資源與工業(yè)部門之間的聯(lián)系,培養(yǎng)學(xué)生的地理思維能力、綜合分析能力,明確工業(yè)生產(chǎn)也應(yīng)因地制宜。2.聯(lián)系實際,了解當(dāng)?shù)貍鹘y(tǒng)工業(yè)發(fā)展?fàn)顩r,為適應(yīng)當(dāng)今世界經(jīng)濟(jì)發(fā)展?fàn)顩r,應(yīng)有哪些改善措施,培養(yǎng)學(xué)生的創(chuàng)新能力。德育目標(biāo)1.通過了解魯爾區(qū)的發(fā)展變化,用發(fā)展的觀點看待傳統(tǒng)工業(yè)區(qū)的改造,適應(yīng)世界發(fā)展潮流。2.中國已經(jīng)“入世”,我們應(yīng)用辯證唯物主義觀點分析我國傳統(tǒng)工業(yè)今后遇到的機(jī)遇和挑戰(zhàn)。
一、教材分析 《真正的哲學(xué)都是自己時代精神上的精華》是人教版高中政治必修四第3章第1框的教學(xué)內(nèi)容,主要學(xué)習(xí)哲學(xué)與時代的關(guān)系。二、教學(xué)目標(biāo)1.知識目標(biāo):識記哲學(xué)是時代的精神上的精華;理解哲學(xué)與時代的關(guān)系。2.能力目標(biāo):培養(yǎng)學(xué)生運用哲學(xué)理論觀察、分析、處理社會問題的能力,增強(qiáng)學(xué)生的時代感。3.情感、態(tài)度和價值觀目標(biāo):培養(yǎng)學(xué)生與時俱進(jìn)的思想品質(zhì),讓學(xué)生關(guān)注時代、關(guān)注現(xiàn)實、關(guān)注生活,逐步樹立科學(xué)的世界觀、人生觀、價值觀 。三、教學(xué)重點難點哲學(xué)與時代的關(guān)系。四、學(xué)情分析本框題的內(nèi)容比較抽象,不易理解,所以講解時需要詳細(xì)。教師指導(dǎo)學(xué)生借助歷史知識進(jìn)行理解。五、教學(xué)方法1.教師啟發(fā)、引導(dǎo),學(xué)生自主閱讀、思考,討論、交流學(xué)習(xí)成果。2.學(xué)案導(dǎo)學(xué):見后面的學(xué)案。3.新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑→情境導(dǎo)入、展示目標(biāo)→合作探究、精講點撥→反思總結(jié)、當(dāng)堂檢測→發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進(jìn)一步理解零點判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認(rèn)識函數(shù)零點的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學(xué)運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學(xué)建模:運用函數(shù)的觀點方程的根;
一、描述圓周運動的物理量 探究交流 打籃球的同學(xué)可能玩過轉(zhuǎn)籃球,讓籃球在指尖旋轉(zhuǎn),展示自己的球技,如圖5-4-1所示.若籃球正繞指尖所在的豎直軸旋轉(zhuǎn),那么籃球上不同高度的各點的角速度相同嗎?線速度相同嗎? 【提示】 籃球上各點的角速度是相同的.但由于不同高度的各點轉(zhuǎn)動時的圓心、半徑不同,由v=ωr可知不同高度的各點的線速度不同.
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點,教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識點,并能夠靈活運用。
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實際問題;5.數(shù)學(xué)運算:能夠正確運用復(fù)數(shù)三角形式計算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識到數(shù)學(xué)知識的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復(fù)數(shù)呢?如何表示?
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠(yuǎn);相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質(zhì),完成函數(shù)增長快慢的認(rèn)識。既是對三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;3、在認(rèn)識函數(shù)增長差異的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長快慢的認(rèn)識;b.邏輯推理:由特殊到一般的推理;
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學(xué)習(xí)中讓學(xué)生體會在類比推理,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對數(shù)函數(shù)過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。