6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來檢測(cè)所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時(shí)對(duì)函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對(duì)函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會(huì)到由簡(jiǎn)單到復(fù)雜、由特殊到一般的化歸思想;并通過對(duì)周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì)抓住問題的主要矛盾來解決問題的基本思想方法;通過對(duì)參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識(shí)圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點(diǎn)”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點(diǎn)所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測(cè)具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對(duì)應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長(zhǎng)度不變,平行于Y軸的線段,在直觀圖中長(zhǎng)度為原來一半。4.對(duì)斜二測(cè)方法進(jìn)行舉例:對(duì)于平面多邊形,我們常用斜二測(cè)畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測(cè)畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測(cè)畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對(duì)稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測(cè)畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長(zhǎng),豎直線段減半;(4)整理.簡(jiǎn)言之:“橫不變,豎減半,平行、重合不改變?!?/p>
1.探究:根據(jù)基本事實(shí)的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個(gè)平面,由此可以想到,如果一個(gè)平面內(nèi)有兩條相交或平行直線都與另一個(gè)平面平行,是否就能使這兩個(gè)平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對(duì)邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個(gè)平面內(nèi)有兩條平行直線與另一個(gè)平面平行,這兩個(gè)平面不一定平行。我們借助長(zhǎng)方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個(gè)平面內(nèi)有兩條相交直線與另一個(gè)平面平行,這兩個(gè)平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號(hào)語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點(diǎn)∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).若BD,AC所成的角為60°,且BD=AC=2.求EF的長(zhǎng)度.解:取BC中點(diǎn)O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點(diǎn),∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時(shí),EF=OE=OF=1,當(dāng)∠EOF=120°時(shí),取EF的中點(diǎn)M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;
新知講授(一)——隨機(jī)試驗(yàn) 我們把對(duì)隨機(jī)現(xiàn)象的實(shí)現(xiàn)和對(duì)它的觀察稱為隨機(jī)試驗(yàn),簡(jiǎn)稱試驗(yàn),常用字母E表示。我們通常研究以下特點(diǎn)的隨機(jī)試驗(yàn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);(3)每次試驗(yàn)總是恰好出現(xiàn)這些可能結(jié)果中的一個(gè),但事先不確定出現(xiàn)哪個(gè)結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎(jiǎng)時(shí),將10個(gè)質(zhì)地和大小完全相同、分別標(biāo)號(hào)0,1,2,...,9的球放入搖獎(jiǎng)器中,經(jīng)過充分?jǐn)嚢韬髶u出一個(gè)球,觀察這個(gè)球的號(hào)碼。這個(gè)隨機(jī)試驗(yàn)共有多少個(gè)可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號(hào)碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號(hào)碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機(jī)試驗(yàn)E的每個(gè)可能的基本結(jié)果稱為樣本點(diǎn),全體樣本點(diǎn)的集合稱為試驗(yàn)E的樣本空間。
三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個(gè)“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運(yùn)用二次函數(shù)及其圖像,性質(zhì)解決實(shí)際問題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學(xué)運(yùn)算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實(shí)際問題;5.數(shù)學(xué)建模:運(yùn)用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)(3,√10);(3)a=b,經(jīng)過點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
(二)?過程與方法? 4.?觀察生活中的慣性現(xiàn)象,了解力和運(yùn)動(dòng)的關(guān)系? 5.?通過實(shí)驗(yàn)加深對(duì)牛頓第一定律的理解? 6.?理解理想實(shí)驗(yàn)是科學(xué)研究的重要方法? (三)?情感態(tài)度與價(jià)值觀? 7.?通過伽利略和亞里士多德對(duì)力和運(yùn)動(dòng)關(guān)系的不同認(rèn)識(shí),了解人類認(rèn)識(shí)事物本質(zhì)的曲折性? 8.?感悟科學(xué)是人類進(jìn)步的不竭動(dòng)力
3、在學(xué)生已有了乘法口訣的數(shù)學(xué)模式后,引導(dǎo)學(xué)生運(yùn)用已有經(jīng)驗(yàn),親自參與其它乘法口訣的學(xué)習(xí),充分發(fā)揮學(xué)生的主體作用,發(fā)展學(xué)生的思維。4、多采用提問讓學(xué)生思考的方法,讓學(xué)生在操作過程中想老師提出的問題,培養(yǎng)學(xué)生的抽象概括能力。如:在擺了兩根小棒后問學(xué)生:現(xiàn)在擺了幾根小棒?可以用幾表示?擺了幾個(gè)2根?用乘法算式應(yīng)怎樣表示等。5、運(yùn)用磁性黑板擺實(shí)物,讓學(xué)生能夠通過觀察實(shí)物直觀感知,如:問2個(gè)2是多少?學(xué)生實(shí)在不能想的可以通過看圖數(shù)數(shù)來完成,這樣便可以照顧學(xué)習(xí)有困難的學(xué)生。學(xué)生已經(jīng)對(duì)乘法的含義有了初步的理解,掌握口訣就比較容易;但是,要熟記乘法口訣并準(zhǔn)確的運(yùn)用還需花較大的精力和時(shí)間,因此,要引導(dǎo)學(xué)生學(xué)會(huì)由加法到乘法,再到口訣的歸納法,由易到難,循序漸進(jìn)的方法。如:2個(gè)2,可以用加法22=4,再到寫乘法算式2×2=4,再歸納出口訣“二二得四”;先引導(dǎo)學(xué)生說出1個(gè)2是多少?編出口訣,再引導(dǎo)說出2個(gè)2是多少,編出口訣等等。
一、教材分析:本節(jié)知識(shí),是在學(xué)生建立了小數(shù)的概念,學(xué)習(xí)了小數(shù)性質(zhì)以及小數(shù)點(diǎn)移動(dòng)引起小數(shù)大小變化的基礎(chǔ)上進(jìn)行的,包括了復(fù)名數(shù)化成小數(shù)和復(fù)名數(shù)化成低級(jí)和高級(jí)單位單名數(shù)。教材重在向?qū)W生滲透“數(shù)學(xué)來源于生活,又服務(wù)于生活”的理念,以小數(shù)在生活中的實(shí)際應(yīng)用為切入點(diǎn),從學(xué)生的生活經(jīng)驗(yàn)和知識(shí)背景出發(fā)創(chuàng)設(shè)情境,引導(dǎo)學(xué)生進(jìn)行積極的體驗(yàn),從而體會(huì)到數(shù)學(xué)的內(nèi)在價(jià)值。二、說教法這節(jié)課,在教法和學(xué)法上力求體現(xiàn)以下幾個(gè)方面:1、堅(jiān)持以“學(xué)生為主題,老師為主導(dǎo),訓(xùn)練為主線”的原則,主要采用啟發(fā)誘導(dǎo)的教學(xué)方法,引導(dǎo)學(xué)生親歷知識(shí)的觀察、發(fā)現(xiàn)、應(yīng)用的過程。引導(dǎo)學(xué)生利用遷移法,討論法,自主探究法對(duì)新知識(shí)進(jìn)行主動(dòng)學(xué)習(xí)。2、注重創(chuàng)設(shè)情境,從學(xué)生已有的小數(shù)知識(shí)出發(fā),緊密結(jié)合具體的生活情境和活動(dòng)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣。
一、說教材《彩色的夢(mèng)》是統(tǒng)編語文小學(xué)二年級(jí)下冊(cè)第四單元的一首兒童詩,本單元的課文迸射著想象的火花,內(nèi)容富有趣味性,《彩色的夢(mèng)》寫的是小朋友彩色鉛筆畫筆畫出了美好的夢(mèng)境。學(xué)習(xí)時(shí)讓孩子們插上想象的翅膀,大膽描繪夢(mèng)境,培養(yǎng)學(xué)生的想象力。二、說教學(xué)目標(biāo)1.認(rèn)識(shí)“盒、聊”等9個(gè)生字,會(huì)寫“彩、夢(mèng)”等9個(gè)生字。理解由生字組成的詞語。? 2.朗讀課文,體會(huì)詩歌描繪的美好意境。? 3.感受想象的樂趣,培養(yǎng)學(xué)生愛想象、敢表現(xiàn)的個(gè)性品質(zhì)。三、說教學(xué)重難點(diǎn)1.識(shí)記生字,朗讀課文,體會(huì)詩歌描繪的美好意境。(重點(diǎn)) 2.感受夢(mèng)的色彩,培養(yǎng)學(xué)生的想象力。(難點(diǎn))
1.學(xué)習(xí)生字詞,正確、流利、有感情地朗讀課文。體會(huì)作者的思想感情。(重點(diǎn)) 2.培養(yǎng)熱愛自然,與自然和諧相處及熱愛生活的美好情感。(難點(diǎn))五、說教法和學(xué)法[說教法]1.識(shí)字時(shí),可以讓學(xué)生在讀課文的同時(shí)借助拼音認(rèn)識(shí)生字。寫字時(shí),注意偏旁部首的寫法, 教師可以結(jié)合學(xué)過的字,引導(dǎo)學(xué)生交流寫字的方法。 ?? 2.采取以讀為主的教學(xué)策略,注意詩歌中有的語句比較長(zhǎng),而且排成兩行,教師應(yīng)該通過范讀的方式指導(dǎo)學(xué)生注意語句中的停頓。 ??3.以畫助讀,展開想象。在學(xué)生充分朗讀課文,對(duì)課文進(jìn)行整體感知之后,可以讓學(xué)生根據(jù)對(duì)課文的理解,展開想象,動(dòng)手畫畫這美麗的搖籃。[說學(xué)法]自主、合作、探究的學(xué)習(xí)方法貫穿在課堂教學(xué)的始終。在識(shí)字教學(xué)中,我讓同學(xué)們用這種方法學(xué)習(xí)生字,?同學(xué)們?cè)谡莆兆约嚎偨Y(jié)得識(shí)字方法的同時(shí),還能學(xué)習(xí)別人的識(shí)字方法。這樣,在學(xué)習(xí)的同時(shí)還培養(yǎng)了能力。
二、說教學(xué)目標(biāo)1.會(huì)認(rèn)“似、耷”等9個(gè)生字,讀準(zhǔn)多音字“似、扇”,會(huì)寫“扇、慢”等8個(gè)生字。 2.朗讀課文,能讀好文中的問句。? 3.能借助大象的話,說說大象的想法是怎么改變的。?4.結(jié)合生活實(shí)際,理解“人家是人家,我是我”的意思。三、說教學(xué)重難點(diǎn)1.有感情地朗讀課文,能借助大象的話,說說大象的想法是怎么改變的。(重點(diǎn)) 2.結(jié)合生活實(shí)際,理解“人家是人家,我是我”的意思。(難點(diǎn))四、說教法和學(xué)法1.抓重點(diǎn)詞句的教學(xué)法?抓住重點(diǎn)詞句,能幫助學(xué)生很好地理解課文。我在教學(xué)過程中牢牢地抓住寫大象耳朵的句子、小動(dòng)物們對(duì)大象耳朵評(píng)論的句子以及體現(xiàn)大象心情的句子,在通過多種多樣的方式去讀這些句子,以及對(duì)學(xué)生恰到好處的點(diǎn)評(píng)過程中,幫助學(xué)生理解課文內(nèi)容,理解課文的主題。?2.小組合作教學(xué)法? 我要求學(xué)生“同桌合作,要求:一人演大象,另一人在小鹿、小馬、小老鼠中選一個(gè)角色來演?!碧岣邔W(xué)生的學(xué)習(xí)品質(zhì),增強(qiáng)學(xué)生學(xué)習(xí)語文的信心。
一、說教材《一匹出色的馬》是統(tǒng)編語文小學(xué)二年級(jí)下冊(cè)第二單元的第3篇課文。課文講述的是一家外出游玩時(shí),妹妹感覺很累,爸爸拾一根枝條讓她當(dāng)“馬”騎,她忘記了疲勞,比大家都先到家的故事。 課文寫的非常美,在教學(xué)過程中,讓學(xué)生邊讀邊想象畫面:河水碧綠碧綠的,微風(fēng)吹過,泛起層層波紋;路的一邊是田野,蔥蔥綠綠的,非??蓯?,像一片柔軟的綠毯。這些描寫春景的句子自然清新,色彩明麗,從文字中想象畫面為將來將畫面寫成文字打下了基礎(chǔ)。文章告訴我們:只要心中有目標(biāo)、有動(dòng)力,堅(jiān)持到底,就一定會(huì)成功。 本文故事性強(qiáng),引導(dǎo)學(xué)生結(jié)合自己的生活經(jīng)驗(yàn)來理解課文,這樣能夠達(dá)到事半功倍的效果。二、說學(xué)情通過一年半的語文學(xué)習(xí),二年級(jí)學(xué)生已經(jīng)認(rèn)識(shí)了一定量的生字,積累了一些詞匯,語言能力得到了一定的發(fā)展,培養(yǎng)了一些基本的學(xué)習(xí)習(xí)慣。但學(xué)生的學(xué)習(xí)自覺性較差,讀書、寫字等習(xí)慣的養(yǎng)成有待于加強(qiáng)和培養(yǎng),學(xué)習(xí)興趣有待于引導(dǎo)、激發(fā)。三、說教學(xué)目標(biāo)1.認(rèn)識(shí)“郊、泛”等15個(gè)生字;會(huì)寫“匹、妹”等9個(gè)生字。2.指導(dǎo)學(xué)生能正確、流利、有感情地朗讀課文。3.讀描寫的句子,邊讀邊想象所描寫的畫面。