本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動(dòng)開啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.(三)強(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個(gè)3之間1的個(gè)數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個(gè)有理數(shù)都可以化為分?jǐn)?shù)形式,而無理數(shù)則不能.探究點(diǎn)二:借助計(jì)算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計(jì)x的整數(shù)部分,看它在哪兩個(gè)連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個(gè)連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
求證:直角三角形的兩個(gè)銳角互余.解析:分析這個(gè)命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語言變成符號(hào)語言,畫出圖形,最后再經(jīng)過分析論證,并寫出證明的過程.三、板書設(shè)計(jì)命題分類公理:公認(rèn)的真命題定理:經(jīng)過證明的真命題證明:推理的過程經(jīng)歷實(shí)際情境,初步體會(huì)公理化思想和方法,了解本教材所采用的公理,讓學(xué)生對(duì)真假命題有一個(gè)清楚的認(rèn)識(shí),從而進(jìn)一步了解定理、公理的概念.培養(yǎng)學(xué)生的語言表達(dá)能力.
第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新” 的體會(huì),知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過上一小節(jié)的實(shí)際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.
在探究估算方法的時(shí)候,教師要注重適時(shí)的引導(dǎo),以免讓學(xué)生無從下手.在教學(xué)過程中一定要讓學(xué)生體會(huì)估算的實(shí)用價(jià)值,了解到“數(shù)學(xué)既來源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評(píng)價(jià)的一些思考在教學(xué)中要多鼓勵(lì)學(xué)生用自己的語言表達(dá)他們的想法,在估算的過程中多給予適當(dāng)?shù)囊龑?dǎo)和評(píng)價(jià),讓學(xué)生逐步把握估算的方法,找到解決問題的信心.比如對(duì)“畫能掛上去嗎”這個(gè)問題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認(rèn)為可以掛上去,因?yàn)槿诉€有身高,完全可以彌補(bǔ)梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學(xué)生可能認(rèn)為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問題的熱情,調(diào)動(dòng)學(xué)生探究問題的積極性.作為教師,一定要尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵(lì)探究方式、表達(dá)方式和解題方法的多樣化.
② 命題的含義:判斷一件事情的句子,叫做命題,如果一個(gè)句子沒有對(duì)某一件事情作出任何判斷,那么它就不是命題.活動(dòng)目的:通過課后的總結(jié),使學(xué)生對(duì)定義、命題等概念有更清楚的認(rèn)識(shí),讓學(xué)生在頭腦中對(duì)本節(jié)課進(jìn)行系統(tǒng)的歸納與整理.教學(xué)效果:學(xué)生在有了前面對(duì)定義、特別是命題概念的學(xué)習(xí)后,能了解命題的結(jié)構(gòu),以及哪些是命題,使學(xué)生對(duì)命題的學(xué)習(xí)有了清楚的認(rèn)識(shí)。第五環(huán)節(jié) 課后練習(xí)學(xué)習(xí)小組搜集八年級(jí)數(shù)學(xué)課本中的新學(xué)的部分定義、命題,看誰找得多.四、教學(xué)反思本節(jié)課的設(shè)計(jì)具有如下特點(diǎn):(1)采用了“小品表演”的形式引入新課,意在激起學(xué)生對(duì)數(shù)學(xué)的興趣,讓學(xué)生知道,數(shù)學(xué)不是枯燥無味的。并能從表演中不同的人對(duì)“黑客”這個(gè)名詞的不同理解更好地悟出“定義”的含義。
第一環(huán)節(jié):回顧引入活動(dòng)內(nèi)容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動(dòng)目的:回顧上節(jié)知識(shí),為本節(jié)課的展開打好基礎(chǔ).教學(xué)效果:學(xué)生舉手發(fā)言,提問個(gè)別學(xué)生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動(dòng)內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等.(2)如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等.(3)如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形.(4)如果一個(gè)四邊的對(duì)角線相等,那么這個(gè)四邊形是矩形.(5)如果一個(gè)四邊形的兩條對(duì)角線互相垂直,那么這個(gè)四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項(xiàng),“那么……”是由已知事項(xiàng)推斷出的結(jié)論.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
一、情境導(dǎo)入神舟十號(hào)是中國(guó)神舟號(hào)系列飛船之一,主要由推進(jìn)艙(服務(wù)艙)、返回艙、軌道艙組成.神舟十號(hào)在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時(shí)38分02.666秒發(fā)射,由長(zhǎng)征二號(hào)F改進(jìn)型運(yùn)載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號(hào)十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號(hào)進(jìn)行對(duì)接.6月26日回歸地球.要讀懂這段報(bào)導(dǎo),你認(rèn)為要知道哪些名稱和術(shù)語的含義?二、合作探究探究點(diǎn)一:定義 下列語句屬于定義的是()A.明天是晴天B.長(zhǎng)方形的四個(gè)角都是直角C.等角的補(bǔ)角相等D.平行四邊形是兩組對(duì)邊分別平行的四邊形解析:作出正確選擇的關(guān)鍵是理解定義的含義.A是對(duì)天氣的預(yù)測(cè),B是描述長(zhǎng)方形的性質(zhì),C是描述補(bǔ)角的性質(zhì).只有D符合定義的概念.故選D.方法總結(jié):定義指的是對(duì)術(shù)語和名稱的含義的描述,是對(duì)一個(gè)事物區(qū)分于其他事物的本質(zhì)特征的描述,而不是對(duì)其性質(zhì)的判斷.
一、情境導(dǎo)入上一節(jié)課我們做過:由兩個(gè)邊長(zhǎng)為1的小正方形,通過剪一剪,拼一拼,得到一個(gè)邊長(zhǎng)為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對(duì)求一個(gè)數(shù)的算術(shù)平方根十分有用.
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過程中教師通過對(duì)問題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過精心設(shè)計(jì)的問題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問題的能力.
1.細(xì)講概念、強(qiáng)化訓(xùn)練要想讓學(xué)生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強(qiáng)概念形成過程的教學(xué),對(duì)提高學(xué)生的思維水平是很有必要的.概念教學(xué)過程中要做到:講清概念,加強(qiáng)訓(xùn)練,逐步深化.“講清概念”就是通過具體實(shí)例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個(gè)正數(shù) 的平方等于 ,即 ,那么這個(gè)正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.
解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標(biāo)確定位置,熟記位置的確定需要橫向與縱向的兩個(gè)數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡(jiǎn)圖,文化宮在D2區(qū),體育場(chǎng)在C4區(qū),據(jù)此說明醫(yī)院在________區(qū),陽光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場(chǎng)的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來確定相關(guān)位置.三、板書設(shè)計(jì)確定位置有序?qū)崝?shù)對(duì)方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實(shí)生活中常用的定位方法呈現(xiàn)給學(xué)生,進(jìn)一步豐富學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過程中創(chuàng)設(shè)生動(dòng)活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機(jī)會(huì),促使他們主動(dòng)參與、積極探究.
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課通過若干圖片,引導(dǎo)學(xué)生感受生活中常常需要確定位置.導(dǎo)入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個(gè)點(diǎn)的位置需要幾個(gè)數(shù)據(jù)呢? 答:一個(gè),例如,若A點(diǎn)表示-2,B點(diǎn)表示3,則由-2和3就可以在數(shù)軸上找到A點(diǎn)和B點(diǎn)的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個(gè)點(diǎn)的位置一般需要一個(gè)數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個(gè)點(diǎn)的位置呢?請(qǐng)同學(xué)們根據(jù)生活中確定位置的實(shí)例,請(qǐng)談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號(hào)”與“3排6號(hào)”中的“6”的含義有什么不同?(3)如果將“6排3號(hào)”簡(jiǎn)記作(6,3),那么“3排6號(hào)”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個(gè)座位一般需要幾個(gè)數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號(hào)數(shù)”來確定位置. Ⅱ. 學(xué)有所用(1) 你能用兩個(gè)數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?
(1)請(qǐng)你用代數(shù)式表示水渠的橫斷面面積;(2)計(jì)算當(dāng)a=3,b=1時(shí),水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a(bǔ)=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時(shí)水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時(shí)需搞清下列幾個(gè)問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個(gè)量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計(jì)教學(xué)過程中,應(yīng)通過活動(dòng)使學(xué)生感知代數(shù)式運(yùn)算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達(dá)到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計(jì)明年的年產(chǎn)值是2.42億元.例3 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81的值是10,當(dāng)x = 3時(shí),求該代數(shù)式的值.解 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81=-27m-3n-81, 此時(shí)-27m-3n-81=10, 所以27m+3n=-91.則當(dāng)x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學(xué)思想——“整體思想”.即是考慮問題時(shí)不是著眼于他的局部特征,而是把注意力和著眼點(diǎn)放在問題的整體結(jié)構(gòu)上,把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法.
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學(xué)生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個(gè)籃球。一天課外活動(dòng),有3個(gè)班級(jí)分別計(jì)劃借籃球總數(shù)的 , 和 。請(qǐng)你算一算,這60個(gè)籃球夠借嗎?如果夠了,還多幾個(gè)籃球?如果不夠,還缺幾個(gè)?解:=60-30-20-15 =-5答:不夠借,還缺5個(gè)籃球。練習(xí)鞏固:第41頁1、2、7、探究活動(dòng) (1)如果2個(gè)數(shù)的積為負(fù)數(shù),那么這2個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?如果3個(gè)數(shù)的積為負(fù)數(shù),那么這3個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?4個(gè)數(shù)呢?5個(gè)數(shù)呢?6個(gè)數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡(jiǎn)便方法計(jì)算(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?本節(jié)課我們探討了有理數(shù)乘法的運(yùn)算律及其應(yīng)用.乘法的運(yùn)算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運(yùn)算中,靈活運(yùn)用運(yùn)算律可以簡(jiǎn)化運(yùn)算.(四)作業(yè):課本42頁作業(yè)題
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負(fù)數(shù)和分?jǐn)?shù)的乘方書寫時(shí),一定要把整個(gè)負(fù)數(shù)和分?jǐn)?shù)用小括號(hào)括起來)三.計(jì)算:①(-2) ,②-2 ,③(- ) ,④ (叫4個(gè)學(xué)生上臺(tái)板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評(píng)講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個(gè)相同因數(shù)積的運(yùn)算,可以運(yùn)用有理數(shù)乘方法則進(jìn)行符號(hào)的確定和冪的求值.乘方的含義:①表示一種運(yùn)算;②表示運(yùn)算的結(jié)果.
討論歸納,總結(jié)出多個(gè)有理數(shù)相乘的規(guī)律:幾個(gè)不等于0的因數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定。當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)因數(shù)為0,積就為0。(2)幾個(gè)不等于0的因數(shù)相乘時(shí),積的絕對(duì)值是多少?(生:積的絕對(duì)值是這幾個(gè)因數(shù)的絕對(duì)值的乘積.)例2、計(jì)算:(1) ;(2) 分析:(1)有多個(gè)不為零的有理數(shù)相乘時(shí),可以先確定積的符號(hào),再把絕對(duì)值相乘;(2)若其中有一個(gè)因數(shù)為0,則積為0。解:(1) = (2) =0練習(xí)(1) ,(2) ,(3) 6、探索活動(dòng):把-6表示成兩個(gè)整數(shù)的積,有多少種可能性?把它們?nèi)繉懗鰜?。(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?(1)有理數(shù)的乘法法則。(2)多個(gè)不等于0的有理數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定。(3)幾個(gè)數(shù)相乘時(shí),如果有一個(gè)因數(shù)是0,則積就為0。(4)乘積是1的兩個(gè)有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題