提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中政治必修2民主選舉:投出理性一票教案

  • 人教版高中地理必修2第一章第二節(jié)人口的空間變化說課稿

    人教版高中地理必修2第一章第二節(jié)人口的空間變化說課稿

    一、說教材【教材分析】本節(jié)課源于人教版必修二第一章第二節(jié)人口的空間變化,該節(jié)主要分為兩部分:人口的遷移和影響因素,對(duì)于這兩部分教材的處理很簡(jiǎn)單,課標(biāo)要求為:根據(jù)資料說出人口分布的特點(diǎn);而考試對(duì)于特點(diǎn)這方面也較重視,在本章的內(nèi)容中這節(jié)算次重點(diǎn),是基于第一節(jié)人口的數(shù)量變化的基礎(chǔ)上講訴的,進(jìn)而結(jié)合教材和課標(biāo)制定如下教學(xué)目標(biāo)?!窘虒W(xué)目標(biāo)】知識(shí)與技能:了解人口遷移的內(nèi)涵,能夠根據(jù)有關(guān)資料說出國(guó)際和我國(guó)人口遷移的特點(diǎn);掌握影響人口遷移的因素,能夠分析一地人口遷移的原因,解決實(shí)際問題。過程與方法:通過圖表的展示總結(jié)歸納國(guó)際國(guó)內(nèi)人口遷移的特點(diǎn),培養(yǎng)學(xué)生讀圖分析,索取所需信息的能力;通過活動(dòng)探究人口遷移的影響因素,理論聯(lián)系實(shí)際。情感態(tài)度與價(jià)值觀:培養(yǎng)熱愛祖國(guó)熱愛家鄉(xiāng)的情感;學(xué)會(huì)尊重他人不要對(duì)移民產(chǎn)生歧視,人人平等的情感。【教學(xué)重點(diǎn)】人口遷移分布的特點(diǎn)

  • 人教版高中地理必修2第二章第一節(jié)城市內(nèi)部空間結(jié)構(gòu)說課稿

    人教版高中地理必修2第二章第一節(jié)城市內(nèi)部空間結(jié)構(gòu)說課稿

    提問:結(jié)合課本找出城市地域結(jié)構(gòu)模式的類型及各自特點(diǎn),模式形成的因素又有哪些?學(xué)生回答,使其掌握基本模式及特點(diǎn),通過對(duì)比,分析把握每一模式各自的特征,學(xué)會(huì)把握事物本質(zhì)?!粼O(shè)計(jì)意圖:閱讀課本,總結(jié)歸納,同時(shí)引導(dǎo),通過原因規(guī)律的探究,大膽設(shè)想,總結(jié)規(guī)律掌握人文地理學(xué)習(xí)思路。4.活動(dòng)設(shè)計(jì):內(nèi)部空間結(jié)構(gòu)變化,結(jié)合實(shí)例,分析說明。提問:結(jié)合江寧區(qū)的變化,分析江寧區(qū)城市結(jié)構(gòu)發(fā)生了哪些變化?結(jié)合課本24頁活動(dòng)題,提出功能結(jié)構(gòu)布局方案?通過理論聯(lián)系實(shí)際,讓學(xué)生更好理解理論,掌握城市結(jié)構(gòu)布局的變化及其影響因素,通過活動(dòng)題方案的提出,學(xué)生能夠掌握布局的規(guī)律性,解決問題。設(shè)計(jì)意圖:理論聯(lián)系實(shí)際,知識(shí)的不枯燥性,提高學(xué)生學(xué)習(xí)興趣。同時(shí),能夠通過總結(jié),深層次認(rèn)識(shí)城市結(jié)構(gòu)布局,活學(xué)活用。

  • 人教版高中歷史必修1古代希臘民主政治說課稿

    人教版高中歷史必修1古代希臘民主政治說課稿

    (4)評(píng)價(jià)民主通過對(duì)雅典公民享有充分的言論自由的介紹及展示伯利克里的講話、陶片放逐法,使學(xué)生認(rèn)識(shí)到,雅典的民主在統(tǒng)治階級(jí)內(nèi)部已經(jīng)達(dá)到了非常高的層次,并促進(jìn)了希臘人完整人格的形成。通過伯利克里講話、圖片、文字分別講述希臘人重責(zé)任感、渴求知識(shí)的民族性格,并請(qǐng)學(xué)生朗讀有關(guān)雅典人生活的有關(guān)文字,讓學(xué)生在閱讀中感情逐漸升溫,引發(fā)學(xué)生對(duì)民主的充分認(rèn)同及對(duì)雅典人重精神生活的無限神往。問題設(shè)置:讓學(xué)生思考雅典民主政治對(duì)后世西方政治制度的重大影響。同時(shí)指出“民主是不可抗拒的歷史潮流!”讓學(xué)生在原有知識(shí)的基礎(chǔ)上認(rèn)識(shí)民主政治的必然性。用書中的兩段材料分析希臘民主政治的特征和實(shí)質(zhì),分析其影響。4.課堂小結(jié)對(duì)本課內(nèi)容進(jìn)行概括性的總結(jié)5.知能訓(xùn)練,運(yùn)用遷移體現(xiàn)一定的層次性,滿足不同層次學(xué)生的要求。6.布置作業(yè)撰寫歷史論文首先布置論文范圍、主題;其次進(jìn)行舉例;最后提供相關(guān)查閱資料的網(wǎng)址。

  • 人教版高中英語必修1Earth quake說課稿

    人教版高中英語必修1Earth quake說課稿

    (4)Finally, I will ask the SS what this sentence mean:It is always calm before a storm.Purpose: attract the SS attention and bring them into discussionStep 2: Pre-reading 讀前Here, I will do the second question in pre-reading first. I will use the method of brainstorming to ask the SS what will happen before an earthquake; and list the phenomenon on the table. 2. Then I will show the SS the picture of abnormal phenomenon, at the same time, encourage the SS to describe.3、finally, I will summarize these phenomenon4、Do the first question in the pre-reading , Imaging your home begins to shake and you must leave it right away. You have time to take only one thing. What will you take? Why?Purpose: help the SS to get further understanding of the topic and stimulate their interests.Step3: While-reading 閱讀(1). Skimming Read the text quickly and catch the meaning of the first and second sentence of each paragraph. Predict the meaning of new words(2).scanning(找讀)A. Read the text again. Do the following question.1. When and where were the strange things happening?2. What are they?3. Why did the text say the world seemed to be at an end?4. How was the city destroyed after the quake?5. When did the second quake hit the city? What was the result of that?6. Who came to help Tangshan first? And how?B. Work in pairs to discuss the question.

  • 人教版高中語文必修3《錦瑟》說課稿

    人教版高中語文必修3《錦瑟》說課稿

    三、教學(xué)目標(biāo)根據(jù)《錦瑟》詩的地位作用以及學(xué)生的實(shí)際情況,還有在古詩詞教學(xué)方面課程標(biāo)準(zhǔn)的相關(guān)要求,現(xiàn)確定以下“三維教學(xué)目標(biāo)”:(一)知識(shí)與技能目標(biāo):感受體悟古典詩歌的意境美,發(fā)揮合理的主觀能動(dòng)性進(jìn)行創(chuàng)新性的閱讀鑒賞,正確認(rèn)識(shí)意象在詩歌意境中的重要作用。并在上述的基礎(chǔ)上提高鑒賞能力和審美情操。(二)過程與方法目標(biāo):《錦瑟》詩的講解采用“引導(dǎo)與自我生成”的方法,從老師的引導(dǎo)開始,以學(xué)生的研討交流再加之教師的總結(jié)結(jié)束。利用教師引導(dǎo)和師生互動(dòng)刺激學(xué)生的領(lǐng)悟力,提高學(xué)生的認(rèn)知水平與能力。(三)情感態(tài)度價(jià)值觀目標(biāo):培養(yǎng)學(xué)生在尊重傳統(tǒng)文化的基礎(chǔ)上熱愛祖國(guó)自己文化的態(tài)度,讓學(xué)生正確認(rèn)識(shí)古典詩詞的精神美。最后在自我感悟中陶冶情操,明心啟智。

  • 人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用教案

    人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用教案

    1.從監(jiān)測(cè)的范圍、速度,人力和財(cái)力的投入等方面看,遙感具有哪些特點(diǎn)?點(diǎn)撥:范圍更廣、速度更快、需要人力更少 、財(cái)力投入少。2.有人說:遙感是人的視力的延伸。你同意這種看法嗎?點(diǎn)撥:同意??梢詮倪b感的定義分析。從某種意義上說,人們“看”的過程就是在遙感,眼睛相當(dāng)于傳感器。課堂小結(jié):遙感技術(shù)是國(guó)土整治和區(qū)域發(fā)展研究中應(yīng)用較廣的技術(shù) 手段之一,我國(guó)在這個(gè)領(lǐng)域已經(jīng)走在了世界的前列。我國(guó)的大部分土地已經(jīng)獲得了大比例尺的航空影像資料,成功發(fā)射了回收式國(guó)土資源衛(wèi)星,自行研制發(fā)射了“風(fēng)云”衛(wèi)星。遙感技術(shù)為我國(guó)自然資源開發(fā)與利用提供 了大量的有用的資料,在我國(guó)農(nóng)業(yè)估產(chǎn)、災(zāi)害監(jiān)測(cè) 、礦產(chǎn)勘察、土地利用、環(huán)境管理與城鄉(xiāng)規(guī)劃中起到了非常重要的作用。板書設(shè)計(jì)§1.2地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中地理必修1第一章第一節(jié)宇宙中的地球說課稿

    人教版高中地理必修1第一章第一節(jié)宇宙中的地球說課稿

    (一)教材的地位與作用本節(jié)描述地球所處的宇宙環(huán)境包括兩部分內(nèi)容,一是能在天體系統(tǒng)中確定地球所在位置,二是結(jié)合太陽燃燒的穩(wěn)定狀態(tài)和大行星運(yùn)軌道特征,說明地球存在生命的宇宙環(huán)境特征。這里需要補(bǔ)充太陽大小長(zhǎng)期穩(wěn)定的燃燒保證地球表面長(zhǎng)期保持適宜的溫度,有利生命進(jìn)化;大小行星公轉(zhuǎn)各行其道,保證地球宇宙環(huán)境的安全。這兩點(diǎn)宜在討論地球是特殊的行星時(shí)補(bǔ)充。說明地球是太陽系中一顆既普通又特殊的行星要通過 3引導(dǎo)學(xué)生從圖文資料中找出地球與其他行星在運(yùn)動(dòng)特征和結(jié)構(gòu)特征上的共性以及軌道位置和自身?xiàng)l件上的特性。運(yùn)動(dòng)特征共性包括同向性、共面性和近圓性;結(jié)構(gòu)特征主要是通過與類地行星比較得出地球在質(zhì)量和體積方面不具特殊性。地球上存在生命主要是因?yàn)槿盏鼐嚯x適中,所以有適合的溫度;因?yàn)榈厍蛸|(zhì)量和體積適中,所以能吸引住大氣形成厚度、壓力適合的大氣層;因?yàn)榈厍虼嬖趲r漿活動(dòng),所以有地球內(nèi)部氫氧分異化合的水汽溢出形成海洋。

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

  • 傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中生物必修3第一章第二節(jié)《內(nèi)環(huán)境穩(wěn)態(tài)的重要性》說課稿

    人教版高中生物必修3第一章第二節(jié)《內(nèi)環(huán)境穩(wěn)態(tài)的重要性》說課稿

    四、穩(wěn)態(tài)的重要意義 為什么內(nèi)環(huán)境穩(wěn)態(tài)失調(diào)后,會(huì)對(duì)機(jī)體造成危害?引導(dǎo)學(xué)生從細(xì)胞代謝需要的物質(zhì)和條件進(jìn)行分析,最后總結(jié)出:內(nèi)環(huán)境穩(wěn)態(tài)是機(jī)體進(jìn)行正常生命活動(dòng)的必要條件。如何預(yù)防內(nèi)環(huán)境穩(wěn)態(tài)失調(diào)、保持機(jī)體健康?引導(dǎo)學(xué)生從外界環(huán)境和機(jī)體自身調(diào)節(jié)能力兩個(gè)方面去思考。即通過加強(qiáng)自我保健,減少外界環(huán)境變化對(duì)機(jī)體的不良影響,同時(shí)增強(qiáng)機(jī)體的調(diào)節(jié)能力以適應(yīng)多變的外界環(huán)境。具體如何做?學(xué)生討論,總結(jié)。1.保護(hù)我們的生存環(huán)境,防治環(huán)境污染。2.加強(qiáng)體育鍛煉,增強(qiáng)體質(zhì),提高機(jī)體適應(yīng)外界環(huán)境的能力。3.加強(qiáng)自我保健,為機(jī)體保持健康創(chuàng)造有利條件。尤其是處于比較惡劣的工作環(huán)境中的人,更應(yīng)注意自身保健,如邊防戰(zhàn)士注意保暖、煉鋼工人注意降溫、抗洪戰(zhàn)士注意補(bǔ)充水鹽等。了解這些知識(shí)后才能懂得如何關(guān)愛自身和他人。

上一頁123...282930313233343536373839下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!