這是相隔兩站的里程,相對問題1而言,難度有所增加。但數(shù)量關(guān)系不復(fù)雜,而此時(shí)學(xué)生已經(jīng)有了問題1扎實(shí)的畫圖基礎(chǔ),所以我直接放手,讓學(xué)生選擇自己喜歡的方法畫圖,再算一算。3、會用圖,能選擇恰當(dāng)?shù)姆椒ń鉀Q實(shí)際問題學(xué)習(xí)的最高境界是學(xué)以致用,畫一畫的目的是幫助自己解決問題,所以在學(xué)生初步掌握借助畫圖理解問題的基礎(chǔ)上,我及時(shí)向?qū)W生提問,你還想求哪段,鼓勵(lì)學(xué)生小組交流,并發(fā)現(xiàn)總結(jié)起點(diǎn)相同的里程問題的解決策略。在問題3時(shí),我還是放手自主探究,因?yàn)橛辛饲懊娴幕A(chǔ),此時(shí),聰明的學(xué)生已經(jīng)掌握了求兩站之間的里程的方法,而接受能力稍微慢一點(diǎn)的學(xué)生通過畫一畫明確算式中相減的兩個(gè)數(shù)量分別表示的哪一段路程,也能解答出來,這時(shí)再乘勝追擊,鼓勵(lì)學(xué)生說一個(gè)算式,讓其他學(xué)生求的是哪兩站之間的里程,這樣的設(shè)計(jì)既鞏固學(xué)習(xí)方法,又進(jìn)行了開拓延展,可謂一舉兩得。本節(jié)課學(xué)生經(jīng)歷、感受著,借助畫圖分析問題、理解問題、解決問題的優(yōu)越性。讓學(xué)生在嘗試、探索中發(fā)展了思維,提高了能力。
二、探究交流,引導(dǎo)概括 —— 方程為了培養(yǎng)學(xué)生的發(fā)現(xiàn)和抽象概括能力,同時(shí)進(jìn)一步理解方程的意義,我讓學(xué)生分組學(xué)習(xí),引導(dǎo)他們先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄?shù)仁降挠泄餐卣?,然后歸納概括什么叫做方程?最后得出:像這樣的含有未知數(shù)的等式,叫做方程。三、討論比較,辨析、概念 —— 等式與方程的關(guān)系為了體現(xiàn)學(xué)生的主體性,培養(yǎng)學(xué)生的合作意識,同時(shí)讓學(xué)生在解決問題的過程中得到創(chuàng)造的樂趣。通過四人合作用自己的方法創(chuàng)作 “ 方程 ” 與 “ 等式 ” 的關(guān)系圖,并用自己的話說一說 “ 等式 ” 與 “ 方程 ” 的關(guān)系:方程一定是等式,但等式不一定是方程。四、鞏固深化,拓展思維 —— 練習(xí)1 、“做一做”:2、判斷是否方程3、“方程一定是等式,等式也一定是方程”這句話對嗎?4、叫學(xué)生用圖來表示等式和方程的關(guān)系。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。只是在學(xué)生需要時(shí)給予恰當(dāng)?shù)膸椭?。”通過不同形式的習(xí)題幫助學(xué)生掌握新知。進(jìn)一步突出本節(jié)課的重難點(diǎn)。尤其是創(chuàng)新題,1、編兩個(gè)不同的方程,使方程的解都是ⅹ=6,2、在□中填入合適的數(shù),使等式成立。具有一定的挑戰(zhàn)性.只有當(dāng)自己的觀點(diǎn)與集體不一致時(shí),才會產(chǎn)生要證實(shí)自己思想的欲望,從而激活學(xué)生思維的火花.但是提出挑戰(zhàn)并不意味著要難倒學(xué)生,而是要激勵(lì)學(xué)生在學(xué)習(xí)的過程中不斷地去獲得成功的體驗(yàn).學(xué)生是學(xué)習(xí)的主體,只有通過學(xué)生自身的”再創(chuàng)造”活動(dòng),才能納入其認(rèn)知結(jié)構(gòu)中,才可能成為有效的知識. 在教與學(xué)的活動(dòng)中,有老師的組織、參與和指導(dǎo),有同伴的合作、交流與探索。 “授之以魚,不如授之以漁。”雖只有一字只差,卻是兩種截然不同的教育理念。我選擇后者。這樣既培養(yǎng)了孩子們分析、推理能力和思維的靈活性,又為學(xué)生的新知建構(gòu)拓展出更大的空間!
一、說教材:稍復(fù)雜的方程的教學(xué)任務(wù)例1教學(xué)解方程ax±b=c及其應(yīng)用(列方程解形如ax±b=c的問題)(1)把解方程和用方程解決問題有機(jī)結(jié)合,在解決問題的過程中解較復(fù)雜的方程。(2)結(jié)合現(xiàn)實(shí)素材(足球上兩種顏色皮的塊數(shù))引出,這種問題用算術(shù)方法解決思考起來比較麻煩。(3解方程的過程其實(shí)是由解若干基本方程構(gòu)成的(y-20=4,2x=24),需要強(qiáng)調(diào)把2x看成一個(gè)整體。(4)可以列出不同的方程,如2x-4=20,關(guān)鍵是使學(xué)生理解數(shù)量關(guān)系。二、說學(xué)生:學(xué)生在前面已經(jīng)學(xué)習(xí)了簡單的方程數(shù)量關(guān)系,及簡單方程式的解法,而且我在前面的教學(xué)中已經(jīng)笨鳥先飛,讓學(xué)生接觸了形如:ax±b=c的方程式。三、說教法:根據(jù)學(xué)生的實(shí)際情況,我準(zhǔn)備在教學(xué)過程中,重點(diǎn)講解稍復(fù)雜方程式的數(shù)量關(guān)系式的分析研究,讓學(xué)生根據(jù)應(yīng)用題的題意列出正確的數(shù)量關(guān)系式。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點(diǎn)與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點(diǎn)概念,進(jìn)一步理解零點(diǎn)判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點(diǎn)的概念;2、理 解函數(shù)零點(diǎn)與方程的根以及函數(shù)圖象與x軸交點(diǎn)的關(guān)系,掌握零點(diǎn)存在性定理的運(yùn)用;3、在認(rèn)識函數(shù)零點(diǎn)的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;b.邏輯推理:零點(diǎn)判定定理;c.數(shù)學(xué)運(yùn)算:運(yùn)用零點(diǎn)判定定理確定零點(diǎn)范圍;d.直觀想象:運(yùn)用圖形判定零點(diǎn);e.數(shù)學(xué)建模:運(yùn)用函數(shù)的觀點(diǎn)方程的根;
本章通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點(diǎn)、方程的根與圖象交點(diǎn)三者之間的聯(lián)系.2.會借助零點(diǎn)存在性定理判斷函數(shù)的零點(diǎn)所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點(diǎn)個(gè)數(shù).?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;2.邏輯推理:借助圖像判斷零點(diǎn)個(gè)數(shù);3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)或零點(diǎn)所在區(qū)間;4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點(diǎn)概念.重點(diǎn):零點(diǎn)的概念,及零點(diǎn)與方程根的聯(lián)系;難點(diǎn):零點(diǎn)的概念的形成.
本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點(diǎn)內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
還有其他解法嗎?從中讓學(xué)生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗(yàn)的方法,鼓勵(lì)他們養(yǎng)成檢驗(yàn)的習(xí)慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項(xiàng)的規(guī)律是什么?多媒體展示上面變形的過程,讓學(xué)生觀察在變形過程中,變化的項(xiàng)的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號.
1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號.(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個(gè)變化過程可以叫做移項(xiàng).學(xué)生活動(dòng):要求學(xué)生對課前解方程的變形能說出哪一過程是移項(xiàng).對比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、化簡、檢驗(yàn).)
我們遇到的往往就是這樣的方程組,我們要想比較簡捷地把它解出來,就需要轉(zhuǎn)化為同一個(gè)未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達(dá)到消元的目的.請大家把解答過程寫出來.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據(jù)上面幾個(gè)方程組的解法,請同學(xué)們思考下面兩個(gè)問題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學(xué)生分組討論、總結(jié)并請學(xué)生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個(gè)方程中同一個(gè)未知數(shù)系數(shù)的絕對值的最小公倍數(shù),然分別在兩個(gè)方程的兩邊乘以適當(dāng)?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).②加減消元,得到一個(gè)一元一次方程.③解一元一次方程.
設(shè)計(jì)意圖:考慮學(xué)生的個(gè)別差異,分層次布置作業(yè),讓基礎(chǔ)差的學(xué)生能夠吃飽,基礎(chǔ)好的學(xué)生吃好,使每位學(xué)生都感到學(xué)有所獲。五、評價(jià)分析數(shù)學(xué)課程標(biāo)準(zhǔn)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,而動(dòng)手實(shí)踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。本著這一理念,在本課的教學(xué)過程中,我嚴(yán)格遵循由感性到理性,將數(shù)學(xué)知識始終與現(xiàn)實(shí)生活中學(xué)生熟悉的實(shí)際問題相結(jié)合,不斷提高他們應(yīng)用數(shù)學(xué)方法分析問題、解決問題的能力。在重視課本基礎(chǔ)知識的基礎(chǔ)上,適當(dāng)進(jìn)行拓展延伸,培養(yǎng)學(xué)生的創(chuàng)新意識,同時(shí)根據(jù)新課程標(biāo)準(zhǔn)的評價(jià)理念,在教學(xué)過程中,不僅注重學(xué)生的參與意識,而且注重學(xué)生對待學(xué)習(xí)的態(tài)度是否積極。課堂中也盡量給學(xué)生更多的空間、更多展示自我的機(jī)會,讓學(xué)生在和諧的氛圍中認(rèn)識自我、找到自信、體驗(yàn)成功的樂趣。使學(xué)生的主體地位得到充分的體現(xiàn),使教學(xué)過程成為一個(gè)在發(fā)現(xiàn)在創(chuàng)造的認(rèn)知過程。
注意強(qiáng)調(diào)概念理解不到位的方面:① tanA是一個(gè)完整的符號,它表示∠A的正切,記號里習(xí)慣省去角的符號“∠”,若用三個(gè)字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個(gè)比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學(xué)生求∠A,∠B的正切及時(shí)強(qiáng)化學(xué)生對概念的3、正切函數(shù)的應(yīng)用理解通過實(shí)際問題的解答進(jìn)一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對學(xué)生進(jìn)行正切的變式訓(xùn)練,讓學(xué)生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習(xí)的安插注意梯度,讓不同的學(xué)生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識要點(diǎn)及注意點(diǎn)五、達(dá)標(biāo)測試具體思路:把幾個(gè)問題分為四個(gè)等級,方便對學(xué)生的了解;通過評價(jià)讓學(xué)生對自己的學(xué)習(xí)也做到心中有數(shù)。
6、問題的檢驗(yàn)學(xué)生提出的問題和老師拓展的問題在解答過程中,學(xué)生能否真正領(lǐng)會,或領(lǐng)會的程度如何?這就需要檢驗(yàn)才能了解。檢驗(yàn)的方式很多,可以通過交流、調(diào)查、反思、隨堂檢測等方式進(jìn)行。我主要采用隨堂檢測的方式,把事先準(zhǔn)備好的自測題發(fā)給學(xué)生,或利用多媒體投影來進(jìn)行當(dāng)堂檢測。檢測題目不宜過多,可隨學(xué)生的課堂表現(xiàn)而有所增減,同時(shí),把拓展性的問題作為思考題留給學(xué)生課外探索。如,這節(jié)課我是選擇了《同步作業(yè)》中的幾個(gè)具有代表性的問題來完成檢驗(yàn)的。安排這一環(huán)節(jié)的意圖:通過把教學(xué)內(nèi)容以問題的形式列出來,用于檢驗(yàn)學(xué)生對知識點(diǎn)的掌握和教師教學(xué)效果的了解,幫助教師及時(shí)掌控課堂教學(xué)情況,調(diào)整教學(xué)思路和教學(xué)進(jìn)度。7、我的收獲和疑惑課程結(jié)束時(shí),讓學(xué)生談?wù)勛约旱氖斋@以及還有哪些問題沒能搞明白。安排這一環(huán)節(jié)的意圖:這一環(huán)節(jié)可以促使學(xué)生對本節(jié)課的內(nèi)容進(jìn)行主動(dòng)的、深層次的的回顧與反思,從而加深學(xué)生對所學(xué)知識的整理、記憶與理解,同時(shí)也便于老師對課堂教學(xué)效果的及時(shí)掌握和調(diào)整以后的教學(xué)思路。
(四)持續(xù)激發(fā)片區(qū)活力,開創(chuàng)新局面。一是進(jìn)一步堅(jiān)持目標(biāo)導(dǎo)向。結(jié)合片區(qū)特色亮點(diǎn),緊扣片區(qū)定位和重大項(xiàng)目布局,聚力攻堅(jiān)片區(qū)主導(dǎo)方向,全力配合片區(qū)搞好基礎(chǔ)設(shè)施建設(shè)。二是進(jìn)一步壓實(shí)工作責(zé)任。立足重點(diǎn)片區(qū)工作實(shí)際,全面梳理“四考”(新增項(xiàng)目、新增入庫、土地出讓、集中開工)“三單”(基礎(chǔ)設(shè)施建設(shè)清單、產(chǎn)業(yè)項(xiàng)目幫扶清單、招商引資項(xiàng)目清單),進(jìn)一步完善考評細(xì)則,以年終績效考核為抓手壓實(shí)目標(biāo)責(zé)任,以考核見真章,以考核促實(shí)效,充分激發(fā)十大重點(diǎn)片區(qū)比學(xué)趕超、奮勇爭先的干勁。三是進(jìn)一步強(qiáng)化協(xié)調(diào)調(diào)度。堅(jiān)持目標(biāo)導(dǎo)向與問題導(dǎo)向相統(tǒng)一,主動(dòng)跟蹤服務(wù),對重點(diǎn)片區(qū)道路建設(shè)、招商引資、土地出讓、流程審批、控規(guī)修編等方面存在的問題,分層級有序調(diào)度,逐個(gè)項(xiàng)目研究、逐個(gè)問題破解,穩(wěn)步推進(jìn),推動(dòng)項(xiàng)目早落地、早開工、早投產(chǎn)、早入庫、早增效。志之所趨,無遠(yuǎn)弗屆;志之所向,無堅(jiān)不入。站在新的起點(diǎn)上,我們將保持發(fā)展定力,增強(qiáng)自身能力,堅(jiān)定凝心聚力謀發(fā)展的決心不動(dòng)搖,乘勢而上開新局,砥礪奮進(jìn)開新篇,為全面建設(shè)全國一流現(xiàn)代化強(qiáng)區(qū),奮力譜寫中國式現(xiàn)代化的我區(qū)篇章貢獻(xiàn)更大公建力量。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。