提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版高中政治必修2世界多極化不可逆轉(zhuǎn)說(shuō)課稿

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿(mǎn)足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿(mǎn)足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 《江城子·乙卯正月二十日夜記夢(mèng)》說(shuō)課稿 2022-2023學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)

    《江城子·乙卯正月二十日夜記夢(mèng)》說(shuō)課稿 2022-2023學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)

    一、溫故導(dǎo)入好的導(dǎo)入未成曲調(diào)先有情,可以取得事半功信的教學(xué)效果。對(duì)于本節(jié)課我以溫故知新的方式導(dǎo)入,以蘇軾的《赤壁賦》和《念奴嬌》引導(dǎo)學(xué)生感受蘇軾的豪放和闊達(dá),從學(xué)生熟悉領(lǐng)域出發(fā),引導(dǎo)學(xué)生探究他內(nèi)心深處的“柔情似水”,感受他的“十年生死”之夢(mèng)。二、誦讀感知(亮點(diǎn)一)《語(yǔ)文課程標(biāo)準(zhǔn)》中建議“教師要充分關(guān)注學(xué)生閱讀需求的多樣性,閱讀心理的獨(dú)特性”。所以在本環(huán)節(jié)我將綜合運(yùn)用聽(tīng)、讀、問(wèn)、答四種方式教學(xué)。首先通過(guò)多媒體聽(tīng)讀,激發(fā)學(xué)生學(xué)習(xí)興趣,直觀感受蘇軾的痛徹心扉和傷心欲絕。其次指定學(xué)生誦讀,并在誦讀之后,由學(xué)生點(diǎn)評(píng),加深學(xué)生對(duì)于斷句、輕重、快慢的理解,進(jìn)一步感受本詞的凄苦哀怨。最后配樂(lè)讀,利用凄清的音樂(lè)引導(dǎo)學(xué)生通過(guò)自己的誦讀來(lái)表現(xiàn)詩(shī)中所蘊(yùn)含的真摯之感。設(shè)計(jì)意圖:通過(guò)多種閱讀方法,反復(fù)閱讀本詞,引導(dǎo)學(xué)生由淺入深的理解本詞的思想內(nèi)容和藝術(shù)風(fēng)格,初步感受作者對(duì)妻子的摯愛(ài)之情和他的痛徹心扉,加深學(xué)生對(duì)文章的理解。

  • 《故都的秋》《荷塘月色》《我與地壇》群文閱讀說(shuō)課稿 2022-2023學(xué)年統(tǒng)編版高中語(yǔ)文必修上冊(cè)

    《故都的秋》《荷塘月色》《我與地壇》群文閱讀說(shuō)課稿 2022-2023學(xué)年統(tǒng)編版高中語(yǔ)文必修上冊(cè)

    (2) 中國(guó)文人的悲秋情結(jié)。3.《荷塘月色》中,作者為什么要離開(kāi)家來(lái)到荷塘散步?4. 思考:作者的心里為何“頗不寧?kù)o?”(教師補(bǔ)充:寫(xiě)作背景)5. 出門(mén)散步后,作者的心情發(fā)生變化了嗎? 有怎樣的變化?6.思考討論:為什么作者說(shuō)“我”與“地壇”間有著宿命般的緣分,二者有何相似之處?(閱讀1-5段)7.思考:作者從他同病相憐的“朋友“身上理解了怎樣的”意圖“?三、課堂總結(jié)李白說(shuō):“天地者,萬(wàn)物之逆旅也?!比松?,如同一場(chǎng)旅行,在人生的旅途中,時(shí)而高山,時(shí)而峽谷,時(shí)而坦途,時(shí)而歧路。我們或放歌,或悲哭,然而,大自然始終以其不變的姿勢(shì)深情地看著我們,而我們,也應(yīng)該學(xué)會(huì)在與自然的深情對(duì)望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁達(dá)夫,荷塘月色之于朱自清,地壇之于史鐵生,他們從中或得到心靈的慰藉、精神的寄托,或得到生存的智慧與勇氣,最終完成精神的超脫。

  • 《一個(gè)消逝了的山村》說(shuō)課稿  2021—2022學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修下冊(cè)

    《一個(gè)消逝了的山村》說(shuō)課稿 2021—2022學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修下冊(cè)

    這幾段內(nèi)容傳達(dá)出的是“要敬畏生命,尊重生命;更要敬畏大自然,尊重大自然,愛(ài)護(hù)大自然”的主旨內(nèi)涵,因此讓學(xué)生通過(guò)自由朗讀的方式,再次體會(huì)馮至對(duì)這個(gè)消逝了的山村的細(xì)致的美好的描繪,感悟馮至傳達(dá)出的對(duì)生命,對(duì)自然的理解和思考。5.最后一個(gè)自然段的解讀依然是交給學(xué)生,先齊讀課文,再讓學(xué)生自主分享自己的體會(huì)或疑惑。但在這一環(huán)節(jié)我也設(shè)計(jì)了兩個(gè)我認(rèn)為必須解答的兩個(gè)問(wèn)題,一是怎么理解“在風(fēng)雨如晦的時(shí)刻”;二是“意味不盡的關(guān)聯(lián)”是指什么。我認(rèn)為這兩個(gè)問(wèn)題一個(gè)涉及到寫(xiě)作背景,一個(gè)涉及到對(duì)全文主旨的一個(gè)整體把握,能夠進(jìn)一步幫助學(xué)生理解散文的深刻內(nèi)涵和主旨,讓學(xué)生有意識(shí)的在閱讀散文過(guò)程中通過(guò)背景知識(shí)進(jìn)行理解。既尊重學(xué)生的個(gè)性化解讀,又能夠讓學(xué)生有意義學(xué)習(xí),完成預(yù)設(shè)的教學(xué)目標(biāo)。如果學(xué)生沒(méi)有提到這兩處,那我就需要做出補(bǔ)充。

  • 《以工匠精神雕琢?xí)r代品質(zhì)》說(shuō)課稿 2022-2023學(xué)年統(tǒng)編版高中語(yǔ)文必修上冊(cè)

    《以工匠精神雕琢?xí)r代品質(zhì)》說(shuō)課稿 2022-2023學(xué)年統(tǒng)編版高中語(yǔ)文必修上冊(cè)

    答案:銅車(chē)馬的輝煌,來(lái)自原料的精挑細(xì)選、工藝的精巧極致和工匠的精心雕琢。可以說(shuō),是精益求精的工匠精神鍛造出了“青銅之冠”的銅車(chē)馬。2.“工匠精神”如此重要,那么,你認(rèn)為“工匠精神”有著怎樣的現(xiàn)實(shí)意義?觀點(diǎn)一:工匠精神在企業(yè)層面,可以認(rèn)為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個(gè)方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導(dǎo)者精神的動(dòng)力。第三,執(zhí)著是企業(yè)走得長(zhǎng)久的底氣。改革開(kāi)放40 多年來(lái),我國(guó)涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟(jì)效益。這正是經(jīng)濟(jì)發(fā)展的隱憂所在。觀點(diǎn)二:工匠精神在員工層面,就是一-種認(rèn)真精神、敬業(yè)精神。其核心是: 不僅僅把工作當(dāng)作賺錢(qián)養(yǎng)家糊口的工具,而是樹(shù)立起對(duì)職業(yè)敬畏、對(duì)工作執(zhí)著、對(duì)產(chǎn)品負(fù)責(zé)的態(tài)度,極度注重細(xì)節(jié),不斷追求完美和極致,給客戶(hù)無(wú)可挑剔的體驗(yàn)。我國(guó)制造業(yè)存在大而不強(qiáng)、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。

  • 古詩(shī)詞誦讀《桂枝香?金陵懷古》說(shuō)課稿(一) 2021-2022學(xué)年統(tǒng)編版高中語(yǔ)文必修下冊(cè)

    古詩(shī)詞誦讀《桂枝香?金陵懷古》說(shuō)課稿(一) 2021-2022學(xué)年統(tǒng)編版高中語(yǔ)文必修下冊(cè)

    王安石,字介甫,號(hào)半山。北宋著名政治家、思想家、文學(xué)家、改革家,唐宋八大家之一。歐陽(yáng)修稱(chēng)贊王安石:“翰林風(fēng)月三千首,吏部文章二百年。老去自憐心尚在,后來(lái)誰(shuí)與子爭(zhēng)先。”傳世文集有《王臨川集》、《臨川集拾遺》等。其詩(shī)文各體兼擅,詞雖不多,但亦擅長(zhǎng),世人哄傳之詩(shī)句莫過(guò)于《泊船瓜洲》中的“春風(fēng)又綠江南岸,明月何時(shí)照我還?!鼻矣忻鳌豆鹬ο恪返取=榻B之后設(shè)置這樣的導(dǎo)入語(yǔ):今天我們共同走進(jìn)王安石,一起欣賞名作《桂枝香·金陵懷古》。(板書(shū)標(biāo)題)(二)整體感知整體感知是賞析文章的前提,通過(guò)初讀,可以使學(xué)生初步了解將要學(xué)到的基本內(nèi)容,了解文章大意及思想意圖,使學(xué)生對(duì)課文內(nèi)容形成整體感知。首先,我會(huì)讓學(xué)生根據(jù)課前預(yù)習(xí),出聲誦讀課文,同時(shí)注意朗讀的快慢、停頓、語(yǔ)調(diào)、輕重音等,然后再播放音頻,糾正他們的讀音與停頓。其次,我會(huì)引導(dǎo)學(xué)生談?wù)勊惺?。學(xué)生通過(guò)朗讀,能夠說(shuō)出本詞雄壯、豪放、有氣勢(shì),有對(duì)景物的贊美和對(duì)歷史的感喟。

  • 古詩(shī)詞誦讀《擬行路難(其四)》說(shuō)課稿 2021-2022學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修下冊(cè)

    古詩(shī)詞誦讀《擬行路難(其四)》說(shuō)課稿 2021-2022學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修下冊(cè)

    (一)導(dǎo)入新課“時(shí)勢(shì)造英雄”,惡劣的環(huán)境造就名詩(shī)名篇。正因如此,懷才不遇于古人是恒久的情感素材。同學(xué)們,請(qǐng)大家回憶我們學(xué)過(guò)哪些抒發(fā)作者懷才不遇的詩(shī)詞?(二)解釋題意擬:仿照,模擬《行路難》,是樂(lè)府雜曲,本為漢代歌謠,晉人袁山松改變其音調(diào),創(chuàng)制新詞,流行一時(shí)。 鮑照《擬行路難》共十八首,歌詠人世的種種憂慮,寄寓悲憤,今天我們學(xué)習(xí)的是其中第四首。(三)作者簡(jiǎn)介、寫(xiě)作背景門(mén)閥制度之下,“上品無(wú)寒門(mén),下品無(wú)世族”,出身寒微的文人往往空懷一腔熱忱,卻報(bào)國(guó)無(wú)門(mén),不得不在壯志未酬的遺恨中坐視時(shí)光流逝。即使躋身仕途,也多是充當(dāng)幕僚、府掾,備受壓抑,在困頓坎坷中徒然掙扎,只落得身心交瘁。

  • 古詩(shī)詞誦讀《桂枝香?金陵懷古》說(shuō)課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語(yǔ)文必修下冊(cè)

    古詩(shī)詞誦讀《桂枝香?金陵懷古》說(shuō)課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語(yǔ)文必修下冊(cè)

    一、教材解析《桂枝香·金陵懷古》選自統(tǒng)教版必修下冊(cè)古詩(shī)詞誦讀單元,此詞通過(guò)對(duì)金陵景物的贊美和歷史興亡的感喟,寄托了作者對(duì)當(dāng)時(shí)朝政的擔(dān)憂和對(duì)國(guó)家政治大事的關(guān)心。全詞情景交融,境界雄渾闊大,風(fēng)格沉郁悲壯,把壯麗的景色和歷史內(nèi)容和諧地融合在一起,自成一格,堪稱(chēng)名篇。二、學(xué)情分析高中一年級(jí)的學(xué)生已具有一定的詩(shī)歌閱讀鑒賞能力,對(duì)學(xué)生來(lái)說(shuō),最重要的是積累誦讀方法,提升鑒賞能力。在本文的教學(xué)過(guò)程中著重落實(shí)“讀”,通過(guò)多樣化的“讀”,提升對(duì)詩(shī)歌“美”的感悟鑒賞能力。三、教學(xué)目標(biāo)從課程標(biāo)準(zhǔn)中“全面提高學(xué)生語(yǔ)文素養(yǎng)”的基本理念出發(fā),我設(shè)計(jì)了以下教學(xué)目標(biāo):1.語(yǔ)言建構(gòu)與運(yùn)用:疏通疑難字詞,讀懂詩(shī)句體會(huì)詞的誦讀要領(lǐng)。

  • (12月5日國(guó)際志愿者日)國(guó)旗下講話:讓愛(ài)灑滿(mǎn)世界的每一個(gè)角落

    (12月5日國(guó)際志愿者日)國(guó)旗下講話:讓愛(ài)灑滿(mǎn)世界的每一個(gè)角落

    談到志愿者,相信大家并不陌生。聯(lián)合國(guó)將它定義為“不以利益、金錢(qián)、揚(yáng)名為目的,而是為了近鄰乃至全世界進(jìn)行貢獻(xiàn)的活動(dòng)者”,并于1985年12月17日,第40屆聯(lián)合國(guó)大會(huì)上,把每年12月5日定為“國(guó)際志愿者日”,目的是為了在全世界范圍內(nèi)弘揚(yáng)志愿者精神。如今已有100多個(gè)國(guó)家積極響應(yīng),我國(guó)也在此之列。中國(guó)是禮儀之邦,自古就有“君子貴人賤己,先人而后己”之說(shuō),依靠自己的力量去幫助他人,將愛(ài)的溫暖在人與人之間傳遞,讓社會(huì)更和諧,這本身也是個(gè)人價(jià)值的社會(huì)體現(xiàn),又何樂(lè)而不為呢?我們都還記得那不平凡的XX年,中國(guó)經(jīng)歷的年初的特大雪災(zāi),地震和8月在京舉行的奧林匹克運(yùn)動(dòng)會(huì)。這些考驗(yàn),向全世界展示了一個(gè)崛起強(qiáng)國(guó)的巨大力量,和國(guó)人偉大的民族精神。在這些重大事件中,都可以見(jiàn)到活躍著的一些身影,是的,他們是志愿者。他們奮不顧身趕赴災(zāi)區(qū),運(yùn)輸救災(zāi)物質(zhì),幫助受難群眾。他們不計(jì)名利,默默奉獻(xiàn),為人們重建家園,他們用愛(ài)心、關(guān)懷、撫慰人們受傷的心靈。他們以熱情、禮貌、智慧向來(lái)自四面八方的賓朋展示中國(guó)的魅力。當(dāng)我們?cè)倩叵肫疬@一幕幕場(chǎng)景時(shí),怎能忘記這些可愛(ài)的志愿者們,所付出的一切呢?

  • “世界艾滋病日”國(guó)旗下的講話:增強(qiáng)自我保護(hù)意識(shí)

    “世界艾滋病日”國(guó)旗下的講話:增強(qiáng)自我保護(hù)意識(shí)

    作為一個(gè)青少年,應(yīng)該認(rèn)識(shí)到:艾滋病的傳播沒(méi)有國(guó)界,我國(guó)是世界上的人口大國(guó),是國(guó)際社會(huì)的一員,有責(zé)任和世界各國(guó)攜手共同努力控制艾滋病的蔓延;學(xué)習(xí)預(yù)防艾滋病的知識(shí),不僅使青少年能及時(shí)了解與掌握預(yù)防艾滋病的知識(shí)、增強(qiáng)自我保護(hù)意識(shí)和抵御艾滋病侵襲的能力;更重要的是培養(yǎng)預(yù)防艾滋病的社會(huì)責(zé)任感、使命感。青少年是社會(huì)和國(guó)家的未來(lái),是全社會(huì)預(yù)防艾滋病的主力軍。青少年參與預(yù)防艾滋病的活動(dòng)意義深遠(yuǎn),不僅是為了青少年自己的生存與健康,而且是為了全社會(huì)、全人類(lèi)的發(fā)展。青少年有責(zé)任成為抵御艾滋病在二十一世紀(jì)猖獗流行的最有生氣的社會(huì)力量。

  • 人教A版高中數(shù)學(xué)必修一二次函數(shù)與一元二次方程、不等式教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一二次函數(shù)與一元二次方程、不等式教學(xué)設(shè)計(jì)(2)

    三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個(gè)“二次”問(wèn)題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過(guò)探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運(yùn)用二次函數(shù)及其圖像,性質(zhì)解決實(shí)際問(wèn)題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問(wèn)題;3.數(shù)學(xué)運(yùn)算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實(shí)際問(wèn)題;5.數(shù)學(xué)建模:運(yùn)用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱(chēng)軸或與對(duì)稱(chēng)軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱(chēng)軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為

上一頁(yè)123...535455565758596061626364下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!