在學習語文經(jīng)驗交流會上,季老師舉著我的《采花釀蜜集》,對大家說:“人日積月累辛勤采擷,終于釀出了知識的瓊漿。大家都應這樣,爭做知識的富戶??!”老師有點激動,低低地爬在鼻梁上的眼鏡突然滑了下來,正好落在那集子上。大家笑了,季老師也笑了。就這樣,我的寫作有了進步,好幾篇作文登上了班級《學作園地》。從此,我愛上了語文,更深深地愛上了季老師。高中升學考前那個星期天的夜晚,季老師舊病復發(fā),累倒了。半夜,老師們把他送進了公社衛(wèi)生院。第二天,同學們都悄悄去衛(wèi)生院看望。我去的時候,季老師正在掛滴流。可是,下午季老師又出現(xiàn)在講臺上,他臉色憔悴,聲音沙啞……我手捧《采花釀蜜集》走近季老師,思緒的溪水從遠方流了回來?!凹纠蠋煛保野驯咀优踅o老師,深情地叫了聲。季老師接過本子,仔細翻閱著,臉上露出了笑容,像是聞到了郁郁芳香的蜜汁似的?!斑M步不小呀!”季老師說著,又在本子扉頁上題了
我還運用多媒體投影幻燈片給學生設置兩組相互對照的選項,讓同學們根據(jù)幻燈片選擇:你贊同每組中那一種價值取向?一組是功名、進取、高官、厚祿與自然、隱逸、本性、自由。另一組是科學、發(fā)展、強大、集中與詩意、和諧、柔弱、個體。經(jīng)過合作探究,討論解答,學生結合陶淵明的歸隱對第一組討論探究的應該比較容易,而對第二組的理解探究會出現(xiàn)一定的難度,教師可以就學生的情感價值觀方面適當?shù)慕o予點撥引導:幻燈片上面的第二組文字通過對比,給我們提供了兩種價值取向,你是要通過科學、發(fā)展、強大和集中來實現(xiàn)遨游太空等童話,那就勢必會令我們放棄了詩意的童話,只關注工業(yè)的發(fā)展,城市面積的擴大,鄉(xiāng)村田園必將減少 。你還是要維護生態(tài)平衡,保護一切的多樣性呢?我認為詩意永遠要領導科學,梅羅和陶淵明就共同表達了八個字——詩意、和諧、柔弱和個體。你的本性在田園,當我們身心疲憊時,我們都需要一個心靈的家園,所以我希望大家無論做何選擇都能夠守住我們那片寧靜、祥和的心靈家園。
(二)、課前檢測:1.課文從哪幾方面介紹馬克思的偉大貢獻?具體介紹一下有哪些偉大貢獻?2.概述課文的結構。此項設置主要是讓學生熟悉課文,為下文揣摩語言打基礎?!皽毓手隆薄#ㄈ?、新課講授:1.先引導學生完成一些語句的揣摩理解,然后師生共同歸納揣摩重點語句的方法。問題1:為什么說馬克思“停止思想”“安靜地睡著了”“永遠地睡著了”?問題2:諱飾修辭手法的運用有什么作用?答案:表達了作者對馬克思的哀悼與尊敬以及不忍再說,而又不得不說的沉痛心情。以上兩個問題重在引導學生從重點句段入手揣摩語言。問題3:第三段是一個復雜的單句,它的句子主干是什么?冒號后面作為賓語的復指成分可以分為哪幾層意思?“正像達爾文……一樣”在句子中是什么成分?起什么作用?
這也就是我在護理崗位上不斷提高,取得一點成績的動力源泉。付出就會有回報,由于平時不懈的努力,在20_年度由甘肅省總工會、共青團甘肅省委、甘肅省人事廳、甘肅省衛(wèi)生廳聯(lián)合舉辦的甘肅省青年崗位技能大賽中奪取了甘肅省青年崗位能手護理技能比賽第一名的佳績,并榮膺了“甘肅省杰出青年崗位能手”殊榮;同時,被省衛(wèi)生廳推薦為全國衛(wèi)生系統(tǒng)護理專業(yè)“巾幗建功”標兵和“全國青年崗位能手”。當然,這些成績的取得,除了我個人的努力之外,離不開我院院領導的支持和鼓勵,離不開同事們的關心和幫忙,借此機會,向他們表示最衷心的感激!
三、突出實效,加強業(yè)務培訓和指導XX市經(jīng)普辦始終站在全市的高度,加強對基層的培訓和指導,切實落實各項工作任務。在不同的階段,針對各項工作的不同特點,對各鎮(zhèn)街進行切合實際的培訓指導,包括舉辦清查業(yè)務培訓會,單位清查兩員培訓會,點對點、面對面鎮(zhèn)街答疑會。建立微信群全天候答疑機制,及時解答各類疑問。四、強化宣傳,營造普查良好氛圍XX市經(jīng)普辦在政府網(wǎng)站開通了“XX市第五次全國經(jīng)濟普查專欄”,安排專人負責專欄的更新維護工作。XX市通過政府網(wǎng)站、微信公眾號等方式及時將《第五次全國經(jīng)濟普查單位清查告知書》向社會公示。由宣傳部牽頭,各鎮(zhèn)街采取多種手段,對普查工作進行宣傳報道。如在人流量較大的城市主干道大型戶外電子顯示屏,沿街單位、門店的電子顯示屏宣傳經(jīng)普口號,宣傳車進村居等多種形式宣傳經(jīng)濟普查工作,取得了良好的效果。在清查工作開始前,市經(jīng)普辦在法治廣場、機關大院擺放經(jīng)普工作相關展板,進一步擴大經(jīng)普工作宣傳力度。
學生在初中學習了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.
本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學思想方法;
一、教學理念在新課改精神指導下,我在本課教學中力求貫徹以下教學理念:新課標的指引觀 、生本位的學生觀、探究式的學習觀、多角色的教師觀、 發(fā)展性的評價觀二、教材地位《馬克思主義的誕生》是人教版必修一第五單元第18課內(nèi)容,本課講述的是國際共產(chǎn)主義運動范疇的歷史,是人類社會進入一個新的發(fā)展時期。從總體上概述了社會主義從空想到科學,從理論到實踐的歷程。說明了科學社會主義理論是歷史發(fā)展的必然結果。本課在國際工運史上占有重要的地位。通過學習學生可對馬克思主義加深了解,理解人類歷史發(fā)展的必然趨勢以及人類一直不斷追求進步的精神,幫助學生樹立正確的人生觀、價值觀,達到以史鑒今,服務現(xiàn)實的目的。
1、《戰(zhàn)后資本主義世界經(jīng)濟體系的形成》是人教版高中歷史必修Ⅱ第八單元第22課,學時為1課時?!稓v史必修Ⅱ》一書用古今貫通、中外關聯(lián)的八個專題來著重反映人類社會經(jīng)濟和社會生活領域發(fā)展進程中的重要史實。從第一單元勾勒“古代中國經(jīng)濟的基本結構與特點”再到第八單元“世界經(jīng)濟的全球化趨勢”,以歷史唯物主義觀點清晰闡明經(jīng)濟全球化是世界生產(chǎn)力發(fā)展的要求和結果,是不以人的意志為轉(zhuǎn)移的歷史必然趨勢。第八單元的標題是《世界經(jīng)濟的全球化趨勢》,作為最后一單元,從內(nèi)容上講,有強烈的時代感和現(xiàn)實意義,是全書內(nèi)容的總結與升華展望。提起“全球化”這個十年前才首次出現(xiàn)在美國《商業(yè)周刊》的新名詞,如今卻是地球人都知道了。然而究竟什么是全球化?作為一歷史現(xiàn)象,全球化有其自身內(nèi)部嚴密完整的體系,其中核心之一便是制度、規(guī)則的全球化,而這正是本課內(nèi)容的著力點。
本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質(zhì).
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結讓學生總結本節(jié)課所學主要知識及解題技巧
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學的主要內(nèi)容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應,有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學生已經(jīng)學過一元二次方程與二次函數(shù)的關系,本節(jié)課的內(nèi)容就是在此基礎上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、了解函數(shù)(結合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學數(shù)形結合及函數(shù)思想; a.數(shù)學抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學建模:運用函數(shù)的觀點方程的根;
本章通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點個數(shù).數(shù)學學科素養(yǎng)1.數(shù)學抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應用.數(shù)學學科素養(yǎng)1.數(shù)學抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學運算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學建模:讓學生借助數(shù)形結合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點:能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
(4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內(nèi)有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內(nèi)有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內(nèi)有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關系?你能用圓柱、圓錐、圓臺的結構特征來解釋這種關系嗎?3.練習一圓柱的一個底面積是S,側面展開圖是一個正方體,那么這個圓柱的側面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.