提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中語文必修4《語言生活的歷史進程》教案

  • 中班語言《夢》說課稿

    中班語言《夢》說課稿

    設計意圖在語言領域中提出:“發(fā)展幼兒語言的關鍵是創(chuàng)設一個使他們想說、敢說、喜歡說、有機會說并得到積極應答的環(huán)境”以及要“鼓勵幼兒大膽清楚的表達自己的想法和感受,發(fā)展幼兒語言表達能力和思維能力。”根據這一目標和要求,結合中班幼兒的年齡特點和語言發(fā)展水平,我選擇了這節(jié)語言活動。活動目標:1、感受散文詩的優(yōu)美意境2、理解散文詩的內容,有感情的朗誦3、鼓勵幼兒大膽創(chuàng)編與花色相應的夢,激發(fā)幼兒想象力與創(chuàng)編能力?;顒又攸c:理解散文詩的內容活動難點鼓勵幼兒大膽創(chuàng)編,激發(fā)幼兒想象力與創(chuàng)編能力。

  • 中班語言《微笑》說課稿

    中班語言《微笑》說課稿

    新《綱要》明確指出,教師要創(chuàng)造性的開展工作。同時,新的省編教材中,在各主題活動的設計上也為教師提供了根據幼兒情況自由生成的空間,幼兒教師要不斷嘗試將新的題材,新的內容引入課堂,以新角度、新形勢、新方法讓幼兒成為學習的主人,教師要善于站在幼兒的角度上設計教學,駑駕教學,水到渠成的實現教學方面的突破。省編幼兒園中班教材中第五主題《我的朋友》的總目標為:初步了解并體驗人與人,人與整個環(huán)境和解相處的快樂感覺,學習并嘗試與他人交往的方式,促進社會交往能力的發(fā)展,所設活動有:好朋友畫像、換名片、哭哭臉和笑笑臉等,多為實踐,操作活動,而作為幼兒最喜歡的教學形式,最有效的教育手段-故事教學的內容卻很少,所以在進行本主題活動內容的基礎上我生成本次故事教育活動。

  • 中班語言《小羊和狼》說課稿

    中班語言《小羊和狼》說課稿

    《小羊和狼》這則童話故事主要講了一個小羊去河邊喝水,大灰狼要吃掉小羊,大象伯伯幫助了小羊,將小羊救下來的故事。圖片畫面色彩鮮艷,能夠吸引幼兒的注意力,而且篇幅短,容易理解和感受,能夠發(fā)揮幼兒的想象力,符合綱要中“鼓勵幼兒大膽、清楚地表達自己的想法和感受,嘗試說明、描述簡單的事物或過程,發(fā)展語言表達能力和思維能力?!钡囊?,并且能很好的將樂于助人這一優(yōu)異品質傳輸給幼兒,在他們成長的道路上有很大的幫助。而且中班幼兒有了一定的生活經驗,具備主動積極的特性,思維能力也在不斷的增強,語言能力也有了很大的發(fā)展,能基本講清楚自己所看到的事物及其變化,因此這篇《小羊和狼》非常適合在中班進行教學,以拓展他們的語言能力、思維能力以及良好品質的養(yǎng)成,能在活動后服務于幼兒的生活中。

  • 中班語言《小精靈克比》說課稿

    中班語言《小精靈克比》說課稿

    說動過程為了講清重點突破難點,從而達到教學目標,我把活動設計如下操作:1、激發(fā)興趣,教師出示故事掛圖,讓幼兒欣賞并提出問題“小朋友,掛圖上有什么?他們都在做什么?”教師引導幼兒觀察掛圖并回答問題從而引出課題。2、理解并欣賞故事,突破重點教師播放故事磁帶讓幼兒認真欣賞;教師示范講故事情景,讓幼兒感受故事中幫助他人的快樂,并試著引導幼兒理解故事內容,提出故事內容相關的問題“故事的名稱叫什么?都講了哪些動物?小精靈克比是這樣幫助他們的?3、學習故事,試著根據故事內容仿編故事,突破難點教師將故事內容進行分段理解,一句一句教幼兒理解并學習故事內容。在學習故事后引導幼兒試著大膽仿編故事。教師和幼兒合作一起完成,感受師幼合作的快樂。4、游戲表演在學習完故事后進行故事情境表演,教師說游戲規(guī)則,幼兒帶動物頭飾進行情境表演,將課堂氣氛推向高潮。

  • 中班語言《小熊過橋》說課稿

    中班語言《小熊過橋》說課稿

    這是一首情節(jié)性的詩歌,關于一個小動物的故事,詩歌抑揚頓挫、瑯瑯上口。講述了一只小熊從最初害怕走竹橋到后來勇敢前進靠自己的力量戰(zhàn)勝困難,獲得成功體驗的過程。困難源于生活,借助《小熊過橋》這一載體回到生活中去體會成功的喜悅,活動貼進生活容易被幼兒接受。大班的幼兒即將升入小學,是良好學習習慣培養(yǎng)的關鍵時期,在學習上,生活中遇到困難,許多幼兒會選擇放棄或尋找他人的幫助,還有許多幼兒需要老師家長不斷的鼓勵和勸說才能做好。這首詩歌針對這一現象啟迪幼兒在遇到困難時要執(zhí)著于自己的努力,懷著“我能行”的信念克服學習生活中的困難。

  • 中班語言《三顆星星》說課稿

    中班語言《三顆星星》說課稿

    隨著社會生活化的加快,現代生活給幼兒帶來太多的知識,而幼兒生活經驗卻太少太少,自我保護能力差,極易受到傷害。因此對幼兒進行一系列的安全保護教育是必不可少的?!缎戮V要》提出:幼兒園的教育活動應是教師帶領幼兒共同創(chuàng)造適應幼兒年齡特點、豐富多彩能積極主動有趣地觀察、實踐、促進幼兒身心和諧發(fā)展的一種教育活動。為此,我選擇了《三顆星星》這篇童話故事,故事準確地介紹作為馬路上交通信號的紅燈、綠燈、黃燈各自的指揮語言。圍繞這個知識點,故事情節(jié)富有兒童趣味性,展開了豐富地想象,巧妙地以天上一顆貪玩的紅星星摔了一跤作為故事開端,引出綠星星、黃星星前來幫忙,最后變得有秩序。特別適合中班幼兒,他們對色彩有了一定的了解,但有缺乏生活實際經驗和自我保護能力,所以我利用在孩子周圍的生活基本經驗開展教學活動,從而真正體現了《綱要》中提出的教育生活化,生活教育化精神。希望通過這則童話故事,尋求不同的思維方式,鼓勵幼兒能大膽回答、表現自我。

  • 中班語言《啊~蜘蛛》說課稿

    中班語言《啊~蜘蛛》說課稿

    二、說教材《啊~蜘蛛》這本書蘊含著人與蜘蛛兩個不同的閱讀角度,從人類的角度閱讀是一種情緒體驗,而通過觀察,關鍵情景變化的圖片,轉換為以蜘蛛為主角進行閱讀就會產生另外一番感受。這個故事講述的是一只小蜘蛛,卻想成為一家人的寵物,它與這家人之間發(fā)生了很多有趣的事情。蜘蛛喜與悲的細節(jié)表情,人物夸張的動作,畫面的色彩都蘊含著不同的情感信息,我通過動與靜結合的閱讀方法,引導幼兒在閱讀畫面的同時調動內部信息去觀察、理解故事內容,以增強幼兒對故事的閱讀理解能力。三、說活動目標1、能夠關注畫面中人物的細節(jié)表情與動作,從中體會角色情緒,嘗試用不同的語氣進行表現。2、能夠從小蜘蛛的角度閱讀故事,理解故事中小蜘蛛的情感和行為。四、說重點難點重點:從人與蜘蛛的不同角度進行閱讀,體驗角色情感的變化。難點:能夠理解小蜘蛛的感受,從小蜘蛛的角度進行表達。

  • 人教A版高中數學必修一函數的零點與方程的解教學設計(1)

    人教A版高中數學必修一函數的零點與方程的解教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.5.1節(jié)《函數零點與方程的解》,由于學生已經學過一元二次方程與二次函數的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、了解函數(結合二次函數)零點的概念;2、理 解函數零點與方程的根以及函數圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學數形結合及函數思想; a.數學抽象:函數零點的概念;b.邏輯推理:零點判定定理;c.數學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數學建模:運用函數的觀點方程的根;

  • 人教A版高中數學必修一函數的零點與方程的解教學設計(2)

    人教A版高中數學必修一函數的零點與方程的解教學設計(2)

    本章通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。1.了解函數的零點、方程的根與圖象交點三者之間的聯系.2.會借助零點存在性定理判斷函數的零點所在的大致區(qū)間.3.能借助函數單調性及圖象判斷零點個數.數學學科素養(yǎng)1.數學抽象:函數零點的概念;2.邏輯推理:借助圖像判斷零點個數;3.數學運算:求函數零點或零點所在區(qū)間;4.數學建模:通過由抽象到具體,由具體到一般的思想總結函數零點概念.重點:零點的概念,及零點與方程根的聯系;難點:零點的概念的形成.

  • 人教A版高中數學必修二總體離散程度的估計教學設計

    人教A版高中數學必修二總體離散程度的估計教學設計

    問題二:上述問題中,甲、乙的平均數、中位數、眾數相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據上述數據計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數據的離散程度。由極差發(fā)現甲的成績波動范圍比乙的大。但由于極差只使用了數據中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數據離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。

  • 點到直線的距離公式教學設計人教A版高中數學選擇性必修第一冊

    點到直線的距離公式教學設計人教A版高中數學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點間的距離公式教學設計人教A版高中數學選擇性必修第一冊

    兩點間的距離公式教學設計人教A版高中數學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側有兩個大型小區(qū),現在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學設計人教A版高中數學選擇性必修第一冊

    兩條平行線間的距離教學設計人教A版高中數學選擇性必修第一冊

    一、情境導學前面我們已經得到了兩點間的距離公式,點到直線的距離公式,關于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標教學設計人教A版高中數學選擇性必修第一冊

    兩直線的交點坐標教學設計人教A版高中數學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數值都成立,根據恒等式的要求,m的一次項系數與常數項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓與圓的位置關系教學設計人教A版高中數學選擇性必修第一冊

    圓與圓的位置關系教學設計人教A版高中數學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線與圓的位置關系教學設計人教A版高中數學選擇性必修第一冊

    直線與圓的位置關系教學設計人教A版高中數學選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數形結合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數的關系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 人教版高中政治必修4真正的哲學都是自己時代的精神上的精華說課稿

    人教版高中政治必修4真正的哲學都是自己時代的精神上的精華說課稿

    2、講授新課:(35分鐘)通過教材第一目的講解,讓學生明白,生活和學習中有許多蘊涵哲學道理的故事,表明哲學并不神秘總結并過渡:生活也離不開哲學,哲學可以是我正確看待自然、人生、和社會的發(fā)展,從而指導人們正確的認識和改造世界。整個過程將伴隨著多媒體影像資料和生生對話討論以提高學生的積極性。3、課堂反饋,知識遷移。最后對本科課進行小結,鞏固重點難點,將本課的哲學知識遷移到與生活相關的例子,實現對知識的升華以及學生的再次創(chuàng)新;可使學生更深刻地理解重點和難點,為下一框學習做好準備。4、板書設計我采用直觀板書的方法,對本課的知識網絡在多媒體上進行展示。盡可能的簡潔,清晰。使學生對知識框架一目了然,幫助學生構建本課的知識結構。5、布置作業(yè)我會留適當的自測題及教學案例讓同學們做課后練習和思考,檢驗學生對本課重點的掌握以及對難點的理解。并及時反饋。對學生在理解中仍有困難的知識點,我會在以后的教學中予以疏導。

  • 人教版高中政治必修4樹立創(chuàng)新意識是唯物辯證法的要求說課稿(一)

    人教版高中政治必修4樹立創(chuàng)新意識是唯物辯證法的要求說課稿(一)

    (二)說學法指導把“學習的主動權還給學生”,倡導“自主、合作、探究”的學習方式,因而,我在教學過程中特別重視創(chuàng)造學生自主參與,合作交流的機會,充分利用學生已獲得的生活體驗,通過相關現象的再現,激發(fā)學生主動參與,積極思考,分析現象背后的哲學理論依據,幫助學生樹立批判精神和創(chuàng)新意識,從而增強教學效果,讓學生在自己思維的活躍中領會本節(jié)課的重點難點。(三)說教學手段:我運用多媒體輔助教學,展示富有感染力的各種現象和場景,營造一個形象生動的課堂氣氛。三、說教學過程教學過程堅持"情境探究法",分為"導入新課——推進新課——走進生活"三個層次,環(huán)環(huán)相扣,逐步推進,幫助學生完成由感性認識到理性認識的飛躍。下面我重點簡述一下對教學過程的設計。

  • 人教版高中政治必修4樹立創(chuàng)新意識是唯物辯證法的要求說課稿(二)

    人教版高中政治必修4樹立創(chuàng)新意識是唯物辯證法的要求說課稿(二)

    一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識是唯物辯證法的要求》是人教版教材高二《生活與哲學》第三單元第十課的第一框題,該部分的內容實質上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識》的重點和核心之一。學好這部分的知識對于學生進一步理解辯證法的思維方法,樹立創(chuàng)新意識起著重要的作用。(二)說教學目標根據課程標準和課改精神,在教學中確定如下三維目標:1、知識目標:辯證否定觀的內涵,辯證法的本質。辯證否定是自我否定,辯證否定觀與書本知識和權威思想的關系,辯證法的革命批判精神與創(chuàng)新意識的關系,分析辯證否定的實質是"揚棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識息息相關。

  • 人教版高中生物必修3第六章第一節(jié)《人口增長對生態(tài)環(huán)境的影響》說課稿

    人教版高中生物必修3第六章第一節(jié)《人口增長對生態(tài)環(huán)境的影響》說課稿

    3、討論問題二:我國、我市人口增長對環(huán)境有那些影響?教師:讓第三、第四組學生分別介紹、展示課前調查到的資料,說明人口增長對我國環(huán)境的影響、對三亞市環(huán)境的影響。學生:第三組學生派代表介紹人口增長過快對我國生態(tài)環(huán)境的影響。第四小組由學生自己主持“我市人口增長過快對三亞市生態(tài)環(huán)境的影響”討論會,匯報課前調查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學生討論、補充和完善。學生:觀察老師投影圖片并進行討論,對圖片問題進行補充和完善。教學意圖:通過讓學生匯報、觀察、主持,能讓學生親身體驗,更深刻地理解人口增長對生態(tài)環(huán)境的影響,培養(yǎng)和提高學生的表達能力、觀察能力、主持會議的能力。4、討論問題三:怎樣協調人與環(huán)境的關系?教師:組織第五組學生進行匯報課前調查到的資料,交流、討論、發(fā)表意見和見解。學生:展示課件、圖片,匯報調查到的情況,提出合理建議。

上一頁123...565758596061626364656667下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!