1.掌握有理數(shù)混合運(yùn)算的順序,并能熟練地進(jìn)行有理數(shù)加、減、乘、除、乘方的混合運(yùn)算.2.在運(yùn)算過(guò)程中能合理地應(yīng)用運(yùn)算律簡(jiǎn)化運(yùn)算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運(yùn)算后,老師為了檢驗(yàn)同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計(jì)算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰(shuí)的計(jì)算正確嗎?二、合作探究探究點(diǎn)一:有理數(shù)的混合運(yùn)算計(jì)算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運(yùn)算,運(yùn)算時(shí),一定要注意運(yùn)算順序,尤其是本題中的乘除運(yùn)算.要從左到右進(jìn)行計(jì)算;(2)題有大括號(hào)、中括號(hào),在運(yùn)算時(shí),可從里到外進(jìn)行.注意要靈活掌握運(yùn)算順序.
1、掌握有理數(shù)混合運(yùn)算法則,并能進(jìn)行有理數(shù)的混合運(yùn)算的計(jì)算。2、經(jīng)歷“二十四”點(diǎn)游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點(diǎn)]有理數(shù)混合運(yùn)算法則。[教學(xué)難點(diǎn)]培養(yǎng)探索思 維方式。【教學(xué)過(guò)程】情境導(dǎo)入——有理數(shù)的混合運(yùn)算是指一個(gè)算式里含有加、減、乘、除、乘方的多種運(yùn)算.下面的算式里有哪幾種運(yùn)算?3+50÷22×( )-1.有理數(shù)混合運(yùn)算的運(yùn)算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級(jí)運(yùn)算,按照從左至右的順序進(jìn)行;3 如果有括號(hào),就先算小括號(hào)里的,再算中括號(hào)里的,最后算大括號(hào)里的。 加法和減法叫做第一級(jí)運(yùn)算;乘法和除法叫做第二級(jí)運(yùn)算;乘方和開(kāi)方(今后將會(huì)學(xué)到)叫做第三級(jí)運(yùn)算。注意:可以應(yīng)用運(yùn)算律,適當(dāng)改變運(yùn)算順序,使運(yùn)算簡(jiǎn)便.合作探究——
(1)用簡(jiǎn)潔明快的語(yǔ)言概括大意,不能超過(guò)200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個(gè),且要分別涉及時(shí)間、路和速度這三個(gè)量.意圖:旨在檢測(cè)學(xué)生的識(shí)圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說(shuō)明:練習(xí)注意了問(wèn)題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對(duì)同學(xué)的回答,教師給予點(diǎn)評(píng),對(duì)回答問(wèn)題暫時(shí)有困難的同學(xué),教師應(yīng)幫助他們樹(shù)立信心。第四環(huán)節(jié):課時(shí)小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問(wèn)題時(shí),可以直接從函數(shù)圖象上獲取信息解決問(wèn)題,當(dāng)然也可以設(shè)法得出各自對(duì)應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過(guò)計(jì)算解決問(wèn)題。通過(guò)列出關(guān)系式解決問(wèn)題時(shí),一般首先判斷關(guān)系式的特征,如兩個(gè)變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時(shí),可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過(guò)點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書(shū)設(shè)計(jì)一次函數(shù)的應(yīng)用單個(gè)一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過(guò)程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個(gè)體差異,使每個(gè)學(xué)生都學(xué)有所獲.
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開(kāi)方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開(kāi)方而是乘法,但為了方便起見(jiàn),我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開(kāi)方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開(kāi)方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
內(nèi)容:情景1:多媒體展示:提出問(wèn)題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過(guò)情景1復(fù)習(xí)公理:兩點(diǎn)之間線(xiàn)段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場(chǎng)景引入,提出問(wèn)題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究?jī)?nèi)容:學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線(xiàn),充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線(xiàn)計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線(xiàn).讓學(xué)生發(fā)現(xiàn):沿圓柱體母線(xiàn)剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線(xiàn)最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法.
解:∵y=23x+a與y=-12x+b的圖象都過(guò)點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個(gè)一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類(lèi)題要先求得頂點(diǎn)的坐標(biāo),即兩個(gè)一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書(shū)設(shè)計(jì)兩個(gè)一次函數(shù)的應(yīng)用實(shí)際生活中的問(wèn)題幾何問(wèn)題進(jìn)一步訓(xùn)練學(xué)生的識(shí)圖能力,能通過(guò)函數(shù)圖象獲取信息,解決簡(jiǎn)單的實(shí)際問(wèn)題,在函數(shù)圖象信息獲取過(guò)程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí),發(fā)展形象思維.在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題的能力和數(shù)學(xué)應(yīng)用意識(shí).
3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線(xiàn)段BC的位置有什么特點(diǎn)?(2)線(xiàn)段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線(xiàn)段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識(shí)并能畫(huà)出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫(xiě)出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫(xiě)出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線(xiàn)平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線(xiàn)平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個(gè)象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線(xiàn)定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線(xiàn)定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行).方法總結(jié):解此類(lèi)題應(yīng)首先結(jié)合圖形猜測(cè)結(jié)論,然后證明.證明兩條直線(xiàn)平行,一般先找它們的截線(xiàn),再求同位角相等(或內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ))來(lái)說(shuō)明兩直線(xiàn)平行.若沒(méi)有公共截線(xiàn),則需作出兩直線(xiàn)的截線(xiàn)輔助證明.三、板書(shū)設(shè)計(jì)平行線(xiàn),的判定)判定公理:同位角相等,兩直線(xiàn)平行判定定理內(nèi)錯(cuò)角相等,兩直線(xiàn)平行同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行本節(jié)課通過(guò)經(jīng)歷探索平行線(xiàn)的判定方法的過(guò)程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
方法總結(jié):平行線(xiàn)與角的大小關(guān)系、直線(xiàn)的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線(xiàn)平行的位置關(guān)系得到兩個(gè)相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點(diǎn)四:平行于同一條直線(xiàn)的兩直線(xiàn)平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線(xiàn)與要證的角發(fā)生聯(lián)系,顯然需作出輔助線(xiàn),溝通已知和結(jié)論.已知AB∥CD,但沒(méi)有一條直線(xiàn)既與AB相交,又與CD相交,所以需要作輔助線(xiàn)構(gòu)造同位角、內(nèi)錯(cuò)角或同旁?xún)?nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過(guò)點(diǎn)E作AB的平行線(xiàn).證明:如圖所示,過(guò)點(diǎn)E作EF∥AB,則有∠B+∠BEF=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線(xiàn)都和第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行),∴∠FED+∠D=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過(guò)一點(diǎn)作一條直線(xiàn)或線(xiàn)段的平行線(xiàn)是我們常作的輔助線(xiàn).
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個(gè)已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類(lèi)型三】 根據(jù)實(shí)際問(wèn)題確定一次函數(shù)的表達(dá)式某商店售貨時(shí),在進(jìn)價(jià)的基礎(chǔ)上加一定利潤(rùn),其數(shù)量x與售價(jià)y的關(guān)系如下表所示,請(qǐng)你根據(jù)表中所提供的信息,列出售價(jià)y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時(shí)的售價(jià).
四個(gè)不同類(lèi)型的問(wèn)題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對(duì)于問(wèn)題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會(huì)畫(huà)圖,利用圖象分析問(wèn)題,體會(huì)數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時(shí)小結(jié)內(nèi)容:總結(jié)本課知識(shí)與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達(dá)式,在確定一次函數(shù)的表達(dá)式時(shí)可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問(wèn)題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達(dá)式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達(dá)式中,寫(xiě)出表達(dá)式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識(shí)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進(jìn)一步鞏固當(dāng)天所學(xué)知識(shí)。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過(guò)大.
小劉同學(xué)用10元錢(qián)購(gòu)買(mǎi)兩種不同的賀卡共8張,單價(jià)分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個(gè)方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個(gè)相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢(qián)數(shù)+2元賀卡錢(qián)數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個(gè)方程組符合題意,可從題目中找出兩個(gè)相等關(guān)系,然后代入未知數(shù),即可得到方程組,進(jìn)而得到正確答案.三、板書(shū)設(shè)計(jì)二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過(guò)自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會(huì)逐步掌握基本的數(shù)學(xué)知識(shí)和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識(shí),提高解決問(wèn)題的能力,感受數(shù)學(xué)創(chuàng)造的樂(lè)趣,增進(jìn)學(xué)好數(shù)學(xué)的信心,增加對(duì)數(shù)學(xué)較全面的體驗(yàn)和理解.
第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實(shí)物投影,并呈現(xiàn)問(wèn)題:在一望無(wú)際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說(shuō):“累死我了”,小馬說(shuō):“你還累,這么大的個(gè),才比我多馱2個(gè).”老牛氣不過(guò)地說(shuō):“哼,我從你背上拿來(lái)一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說(shuō):“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問(wèn)題呢?請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個(gè)未知數(shù),從而得出二元一次方程.這個(gè)問(wèn)題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程 ,若老牛從小馬背上拿來(lái)1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程: .
意圖:課后作業(yè)設(shè)計(jì)包括了三個(gè)層面:作業(yè)1是為了鞏固基礎(chǔ)知識(shí)而設(shè)計(jì);作業(yè)2是為了擴(kuò)展學(xué)生的知識(shí)面;作業(yè)3是為了拓廣知識(shí),進(jìn)行課后探究而設(shè)計(jì),通過(guò)此題可讓學(xué)生進(jìn)一步認(rèn)識(shí)勾股定理的前提條件.效果:學(xué)生進(jìn)一步加強(qiáng)對(duì)本課知識(shí)的理解和掌握.教學(xué)設(shè)計(jì)反思(一)設(shè)計(jì)理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個(gè)過(guò)程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動(dòng)學(xué)習(xí).教師只在學(xué)生遇到困難時(shí),進(jìn)行引導(dǎo)或組織學(xué)生通過(guò)討論來(lái)突破難點(diǎn).(二)突出重點(diǎn)、突破難點(diǎn)的策略為了讓學(xué)生在學(xué)習(xí)過(guò)程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過(guò)幾個(gè)探究活動(dòng)引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過(guò)渡到探究一般直角三角形,學(xué)生通過(guò)觀察圖形,計(jì)算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理.
目的:課后作業(yè)設(shè)計(jì)包括了兩個(gè)層面:作業(yè)1是為了鞏固基礎(chǔ)知識(shí)而設(shè)計(jì);作業(yè)2是為了擴(kuò)展學(xué)生的知識(shí)面;拓廣知識(shí),增加學(xué)生對(duì)數(shù)學(xué)問(wèn)題本質(zhì)的思考而設(shè)計(jì),通過(guò)此題可讓學(xué)生進(jìn)一步運(yùn)用三元一次方程組解決問(wèn)題.教學(xué)設(shè)計(jì)反思1.本節(jié)課的內(nèi)容屬于選修學(xué)習(xí)的內(nèi)容,主要突出對(duì)數(shù)學(xué)興趣濃厚、學(xué)有余力的同學(xué)進(jìn)一步探究和拓展使用,在數(shù)學(xué)方法和思想方面需重點(diǎn)引導(dǎo),通過(guò)引導(dǎo),使學(xué)生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導(dǎo),并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學(xué)生理解三元一次方程組概念的同時(shí),要讓學(xué)生理解為什么要用三元一次方程組甚至多元方程組去求解實(shí)際問(wèn)題的必要性,從而掌握本堂課的基礎(chǔ)知識(shí).在教學(xué)的過(guò)程中,要讓學(xué)生充分理解對(duì)復(fù)雜的實(shí)際問(wèn)題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點(diǎn)和缺點(diǎn),有關(guān)這一方面的題目要讓學(xué)生充分討論、交流、合作,其理解才會(huì)深刻.
探究點(diǎn)二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點(diǎn),求證:∠BPC>∠A.解析:由題意無(wú)法直接得出∠BPC>∠A,延長(zhǎng)BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長(zhǎng)BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時(shí),兩個(gè)角應(yīng)是同一個(gè)三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書(shū)設(shè)計(jì)三角形的外角外角:三角形的一邊與另一邊的延長(zhǎng)線(xiàn)所組成的 角,叫做三角形的外角推論1:三角形的一個(gè)外角等于和它不相鄰的兩 個(gè)內(nèi)角的和推論2:三角形的一個(gè)外角大于任何一個(gè)和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過(guò)的知識(shí)來(lái)推導(dǎo)出新的定理以及運(yùn)用新的定理解決相關(guān)問(wèn)題,進(jìn)一步熟悉和掌握證明的步驟、格式、方法、技巧.進(jìn)一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強(qiáng)化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.
證法二:(1)延長(zhǎng)BD交AC于E(或延長(zhǎng)CD交AB于E),如圖.則∠BDC是△CDE的一個(gè)外角.∴∠BDC>∠DEC.(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個(gè)外角(已作)∴∠DEC>∠A(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長(zhǎng)BD交AC于E,則∠BDC是△DCE的一個(gè)外角.∴∠BDC=∠C+∠DEC(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∵∠DEC是△ABE的一個(gè)外角∴∠DEC=∠A+∠B(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動(dòng)目的:讓學(xué)生接觸各種類(lèi)型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對(duì)于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個(gè)過(guò)渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
(4)從平均分看,兩隊(duì)的平均分相同,實(shí)力大體相當(dāng);從折線(xiàn)的走勢(shì)看,甲隊(duì)比賽成績(jī)呈上升趨勢(shì),而乙隊(duì)比賽成績(jī)呈下降趨勢(shì);從獲勝場(chǎng)數(shù)看,甲隊(duì)勝三場(chǎng),乙隊(duì)勝兩場(chǎng),甲隊(duì)成績(jī)較好;從方差看,甲隊(duì)比賽成績(jī)比乙隊(duì)比賽成績(jī)波動(dòng)小,甲隊(duì)成績(jī)較穩(wěn)定.綜上所述,選派甲隊(duì)參賽更能取得好成績(jī).方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊(duì)的成績(jī),然后從平均數(shù)、方差的角度來(lái)考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書(shū)設(shè)計(jì)數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個(gè)量的探索過(guò)程,通過(guò)實(shí)例體會(huì)用樣本估計(jì)總體的統(tǒng)計(jì)思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過(guò)小組合作,培養(yǎng)學(xué)生的合作意識(shí);通過(guò)解決實(shí)際問(wèn)題,讓學(xué)生體會(huì)數(shù)學(xué)與生活的密切聯(lián)系.
意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛(ài)國(guó)熱情;(2)學(xué)生加強(qiáng)了對(duì)數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過(guò)讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時(shí)也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對(duì)勾股定理的歷史充滿(mǎn)了濃厚的興趣,同時(shí)也為中國(guó)古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國(guó)數(shù)學(xué)成就不夠強(qiáng),還應(yīng)發(fā)奮努力.有同學(xué)能意識(shí)這一點(diǎn),這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問(wèn):通過(guò)這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識(shí)要點(diǎn),數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對(duì)本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗(yàn)證勾股定理中蘊(yùn)含的數(shù)形結(jié)合思想,學(xué)生對(duì)勾股定理的歷史的感悟及對(duì)勾股定理應(yīng)用的認(rèn)識(shí)等等.