本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
新知講授(一)——隨機(jī)試驗 我們把對隨機(jī)現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機(jī)試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機(jī)試驗:(1)試驗可以在相同條件下重復(fù)進(jìn)行;(2)試驗的所有可能結(jié)果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現(xiàn)這些可能結(jié)果中的一個,但事先不確定出現(xiàn)哪個結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質(zhì)地和大小完全相同、分別標(biāo)號0,1,2,...,9的球放入搖獎器中,經(jīng)過充分?jǐn)嚢韬髶u出一個球,觀察這個球的號碼。這個隨機(jī)試驗共有多少個可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機(jī)試驗E的每個可能的基本結(jié)果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認(rèn)識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認(rèn)識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個“圓錐曲線方程”一章,是學(xué)生應(yīng)重點掌握的基本數(shù)學(xué)方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點坐標(biāo)為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個焦點的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
問題1. 用一個大寫的英文字母或一個阿拉伯?dāng)?shù)字給教室里的一個座位編號,總共能編出多少種不同的號碼?因為英文字母共有26個,阿拉伯?dāng)?shù)字共有10個,所以總共可以編出26+10=36種不同的號碼.問題2.你能說說這個問題的特征嗎?上述計數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標(biāo)準(zhǔn),根據(jù)問題條件分為字母號碼和數(shù)字號碼兩類;(2)分別計算各類號碼的個數(shù);(3)各類號碼的個數(shù)相加,得出所有號碼的個數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時,一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項專業(yè),如表,
當(dāng)A,C顏色相同時,先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時,先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會鋼琴和小號中的一種樂器,其中7人會鋼琴,3人會小號,從中選出會鋼琴與會小號的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會鋼琴又會小號(把該人記為甲),只會鋼琴的有6人,只會小號的有2人.把從中選出會鋼琴與會小號各1人的方法分為兩類.第1類,甲入選,另1人只需從其他8人中任選1人,故這類選法共8種;第2類,甲不入選,則會鋼琴的只能從6個只會鋼琴的人中選出,有6種不同的選法,會小號的也只能從只會小號的2人中選出,有2種不同的選法,所以這類選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.
一、進(jìn)一步強(qiáng)化經(jīng)營意識 具體措施是要進(jìn)一步降低用藥成本比例,拓展服務(wù)范圍,向服務(wù)要效益,向新技術(shù)要效益,向醫(yī)療挖潛要效益。外科是一個重要的臨床科室,也是一個高風(fēng)險的戰(zhàn)場。我們殷切希望在醫(yī)院領(lǐng)導(dǎo)和兄弟科室的關(guān)心、支持和指導(dǎo)下,外科明年能夠搬進(jìn)新樓,工作更上一層樓?! 《⒓訌?qiáng)與交警、公安和保險部門的合作 有關(guān)部門工作人員來我們科室調(diào)查、協(xié)調(diào)工作時,我們要接待熱情,服務(wù)耐心,照顧周到。加強(qiáng)科室內(nèi)部管理,及時與患者家屬溝通。對交通創(chuàng)傷病人及時和我院警醫(yī)聯(lián)系小組人員溝通,積極、主動尋找“三無”病人家屬,盡力防止病人擅自出院造成欠費。
出示:狠心的宙斯又派一只兇惡的鷲鷹,每天站在普羅米修斯的雙膝上,用它尖利的嘴巴,啄食他的肝臟。白天,他的肝臟被吃光了,可是一到晚上,肝臟又重新長了起來。這樣,普羅米修斯所承受的痛苦,永遠(yuǎn)沒有盡頭了。
一、必須培養(yǎng)強(qiáng)烈的法制觀念法制觀念由來已久,作為我們處在現(xiàn)代社會的人,在法制建設(shè)不斷健全、社會文明中不斷發(fā)展的新形勢下,個人的社會活動都必須依據(jù)法律而進(jìn)行,因此,更應(yīng)該學(xué)法、懂法,用法、遵循法律。常常會在電視、報紙的報道中看到一些人沒有法制觀念,不懂得用法律的武器來維護(hù)自己的尊嚴(yán)和權(quán)利,他們甚至在受到不法侵犯的時候還不知道用法律途徑解決問題,有的選擇暴力、有的選擇忍受。這是一種悲哀,我們要吸取教訓(xùn),培養(yǎng)自身的法制觀念,同時也對學(xué)生及學(xué)生家長進(jìn)行普法宣傳,只有大家都有法制觀念了,法律才能更好的發(fā)揮它的作用。
尊敬的老師、親愛的同學(xué)們:早上好!在昂揚的國歌聲中,我們又迎來了新的一周,這一周是第xx屆全國推廣普通話宣傳周,本屆推普周的主題是:“規(guī)范使用國家通用語言文字,弘揚中華優(yōu)秀傳統(tǒng)文化?!蓖茝V普通話、書寫規(guī)范漢字是中國文化的重要組成部分,每一個中國人都有責(zé)任宣傳她、發(fā)揚她、讓美麗的語言響徹世界。我國是一個文明古國,五千年的文化積淀,五千年的華語傳承,匯聚成漢語這條奔騰不息的河流。泱泱大國,龍的子孫,每一個中國人的臉上,都洋溢著華夏文明的燦爛。學(xué)好普通話,講好普通話,這是我們每一個中國人責(zé)無旁貸的職責(zé)。隨著祖國的強(qiáng)大,無數(shù)外國友人慕名而來,跨入了學(xué)漢語的行列。連外國人都爭著學(xué)中文,作為炎黃子孫的我們怎能不學(xué)好自己本民族的語言呢?是啊!作為一名炎黃子孫,請講普通話,為講普通話而驕傲。課上、課間,讓校園的每一個角落時時響徹著這優(yōu)美的聲音,讓講普通話成為校園一道最優(yōu)美的風(fēng)景。
培養(yǎng)學(xué)生學(xué)科學(xué)、愛科學(xué)、講科學(xué)、用科學(xué)的興趣,增強(qiáng)他們的獨立思維、創(chuàng)新實踐、環(huán)境保護(hù)的意識和能力培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、勇于創(chuàng)新、敢于挑戰(zhàn)的科學(xué)精神。下面小編為大家收集整理的XX全國科普日國旗下講話。歡迎大家閱讀!!全國科普日國旗下講話 尊敬的各位領(lǐng)導(dǎo)、同志們、同學(xué)們: 金秋送爽,丹桂飄香。在第九個全國科普日到來之際,我們在這里隆重舉行“xx縣20**年全國科普日活動啟動儀式”,在此,我謹(jǐn)代表縣委、人大、政府、政協(xié),向前來參加活動的同志并通過你們向全縣廣大科技工作者、科普工作者和科普志愿者表示誠摯的問候!向關(guān)心支持我縣科普事業(yè)發(fā)展的社會各界朋友表示衷心的感謝! 科學(xué)技術(shù)是第一生產(chǎn)力,科學(xué)技術(shù)的發(fā)展離不開科技知識的普及。去年以來,我縣開展的全國科普示xx縣創(chuàng)建工作取得了顯著成就,科普宣傳欄、科普服務(wù)站、科普活動室等陣地建設(shè)日趨完善;送科技下鄉(xiāng)、送科技進(jìn)社區(qū)、送科技進(jìn)校園、科普報告會、科普培訓(xùn)班、科普日、科技周、青少年科技創(chuàng)新大賽、科技夏令營等科普活動有聲有色;省級科普示范鄉(xiāng)鎮(zhèn)不斷增多;農(nóng)民專業(yè)技術(shù)協(xié)會、農(nóng)村科普示范基地的數(shù)量和規(guī)模不斷擴(kuò)大,農(nóng)民科技致富的能力不斷增強(qiáng),有效促進(jìn)了經(jīng)濟(jì)社會的健康發(fā)展。今年3月,我縣順利通過省科協(xié)的檢查驗收,5月被中國科協(xié)授予“XXXX年全國科普示xx縣”光榮稱號。
老師們,同學(xué)們:大家好!本周的教育主題是“我們從小學(xué)創(chuàng)造”?;仡櫲祟愇拿鳉v史,可以發(fā)現(xiàn)我們?nèi)祟悇倎淼竭@個世界的時候幾乎是一無所有,可是今天,人類卻在地球上建立了如此輝煌的文明,成為地球當(dāng)之無愧的主人。原因是什么呢?那就是一項又一項的科學(xué)發(fā)明和創(chuàng)造,推動了社會的進(jìn)步,人類上天入地不再是美好理想,呼風(fēng)喚雨不再是癡心妄想。作為新一代少先隊員,我們有創(chuàng)造人類新文明的責(zé)任。我?!氨Wo(hù)母親河”小記者團(tuán)和“尋訪創(chuàng)新”小記者團(tuán)的隊員們勤于實踐,勇于創(chuàng)新。他們是同學(xué)們的優(yōu)秀代表,也是大家學(xué)習(xí)的榜樣。以他們?yōu)橹黧w的梅鄉(xiāng)小虎隊被江蘇省文明辦、團(tuán)省委等聯(lián)合表彰為優(yōu)秀團(tuán)隊。領(lǐng)獎期間,我認(rèn)識了兩位令人敬佩的優(yōu)秀少年。從他們的身上,看到了我們的不足,主要是創(chuàng)新含金量不夠。一位是揚州的李沐同學(xué),一位是南通的季燁劍同學(xué)。李沐同學(xué)是揚州市實驗小學(xué)四年級學(xué)生,他4歲開始動手實驗,7歲申請國家專利,目前他才10歲已擁有3項國家專利權(quán),發(fā)表了創(chuàng)新發(fā)明類文章5篇,獲得了第三屆“中國青少年科技創(chuàng)新獎”。六歲的李沐面對可口椰子汁、可樂卻無法下手,他拉不開那些易拉罐,因為拉環(huán)太小。于是他在多次實驗后,在小環(huán)上加了一個鑰匙圈,伸進(jìn)手指,一拉就開。這就是他的第一個專利,點燃了他不斷創(chuàng)新的火花。