提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

《百年孤獨(dú)(節(jié)選)》說課稿 20222023學(xué)年統(tǒng)編版高中語文選擇性必修上冊(cè)

  • 人教版高中語文必修4《雷雨》教案

    人教版高中語文必修4《雷雨》教案

    節(jié)選部分結(jié)構(gòu):節(jié)選自第二幕,主要寫周樸園與魯家母子的對(duì)話,分兩部分。第一部分:三十年后周樸園和侍萍再次相見。第一層:侍萍以敘述別人故事的口吻,揭露周樸園的罪惡,訴說自己的遭遇。──寫他們過去的矛盾第二層:通過周樸園態(tài)度的變化,暴露他的偽善面目,表現(xiàn)侍萍這個(gè)勞動(dòng)?jì)D女的階級(jí)本色。──寫他們現(xiàn)在的矛盾第二部分:周樸園與魯大海父子、侍萍與周萍母子見面。通過周樸園和魯大海的激烈沖突,揭露周樸園壓榨工人的罪行,反映工人階級(jí)的反抗斗爭(zhēng)。分段依據(jù):第一部分從家庭生活方面來揭露周樸園;第二部分從社會(huì)生活方面來揭露周樸園。為了使周魯兩家三十年的新仇舊恨集中在一幕戲中得到反映,作者靈活地運(yùn)用了“回顧”的方法,把歷史和現(xiàn)實(shí),過去和現(xiàn)在緊緊聯(lián)系起來了,用以刻畫人物性格,推動(dòng)劇情發(fā)展。

  • 人教版高中語文必修2《家》教案3篇

    人教版高中語文必修2《家》教案3篇

    (幻燈六)巴金作品《家》描寫的是“五四”之后,成都地區(qū)一個(gè)封建大家庭走向崩潰的故事。故事集中在1920年冬到1921年秋的八九個(gè)月時(shí)間里。成都的一個(gè)官僚地主家庭高公館,一家之主的高老太爺,封建專制,頑固不化。長(zhǎng)房長(zhǎng)孫覺新,為人厚道,卻很軟弱,原與梅表姐相愛,后屈從于老太爺之命而與李瑞玨結(jié)婚。后來梅和瑞玨雙雙慘死。覺新的胞弟覺民、覺慧積極參加愛國(guó)運(yùn)動(dòng),從而和馮公館的馮樂山成了死對(duì)頭。覺民愛上琴,馮樂山卻要他娶自己的侄孫女,在覺民覺慧的反抗下,他們終于取得勝利。覺慧愛上聰明伶俐的婢女鳴鳳,但馮樂山卻指名要娶鳴鳳為妾,鳴鳳堅(jiān)決不從,投湖自盡…至此,覺新有所覺醒,而覺慧則毅然脫離家庭,投身革命。(故事主要以高家三兄弟的愛情遭際為線索。)

  • 人教版高中語文必修4《竇娥冤》教案

    人教版高中語文必修4《竇娥冤》教案

    竇娥的三樁誓愿明明是幻想,卻偏偏寫成現(xiàn)實(shí),明明是不合理的偏偏寫成合理的,這說明了什么?明確:這說明在當(dāng)時(shí)的歷史條件下,除了乞求天地鬼神申訴冤屈以外,沒有別的辦法,作者采用這種浪漫主義的表現(xiàn)手法,一是表明社會(huì)的腐敗黑暗,二是刻畫竇娥強(qiáng)烈的反抗精神,三是表達(dá)人民要懲治邪惡的愿望?!吧贰本褪墙Y(jié)尾的曲牌,為什么關(guān)漢卿要把“煞”分成[二煞][一煞][煞尾]三個(gè)曲牌呢?明確:說明蓄積在竇娥胸中的怒火再也無法控制,猶如地下巖漿,沖向決口。也說明劇作家意猶未盡,他要把竇娥的無辜受害,要把人們對(duì)竇娥的同情,要把人們對(duì)統(tǒng)治者的憤恨表現(xiàn)得痛痛快快,淋漓盡致。于是在結(jié)尾處一波三折,把高潮推向頂峰?!陡]娥冤》中有兩句唱詞,兩個(gè)牌文本不同,試分析其優(yōu)劣?!豆琶译s劇》本:地也,你不分好歹難為地;天也,我今日負(fù)屈銜冤哀告天。

  • 人教版高中語文必修5《邊城》教案

    人教版高中語文必修5《邊城》教案

    【教學(xué)過程】一、介紹作者沈從文先生(1902~1988),現(xiàn)代作家、歷史文物研究學(xué)者。原名沈岳煥,筆名小兵、懋琳、休蕓蕓等。湖南鳳凰(今屬湘西土家族苗族自治州)人。1926年出版第一本創(chuàng)作集《鴨子》,有7O余種作品集,被人稱為多產(chǎn)作家。主要代表作有:短篇小說《丈夫》、《貴生》、《三三》,長(zhǎng)篇小說《邊城》、《長(zhǎng)河》,以反映湘西下層人民生活的作品最具特色。他的創(chuàng)作表現(xiàn)手法不拘一格,文體不拘常例,故事不拘常格,嘗試各種體式和結(jié)構(gòu)進(jìn)行創(chuàng)作,成為現(xiàn)代文學(xué)史上不可多得的“文體作家”。在文學(xué)態(tài)度上,沈從文先生一直堅(jiān)持自由主義立場(chǎng),堅(jiān)持文學(xué)要超越政治和商業(yè)的影響。1948年沈從文先生受到了左翼文化界猛烈批判,郭沫若斥責(zé)沈從文先生:“一直是有意識(shí)的作為反動(dòng)派而活動(dòng)著”。下半生從事文物、工藝美術(shù)圖案及物質(zhì)文化史的研究工作。1978年調(diào)中國(guó)社會(huì)科學(xué)院歷史研究所任研究員,致力于中國(guó)古代服飾及其他史學(xué)領(lǐng)域的研究。于1980年應(yīng)邀赴美國(guó)講學(xué),并進(jìn)入諾貝爾文學(xué)獎(jiǎng)的終審名單。

  • 人教版高中語文必修2《游褒禪山記》教案2篇

    人教版高中語文必修2《游褒禪山記》教案2篇

    1.本文由“不得極夫游之樂”生發(fā)出“盡吾志”的觀點(diǎn),又由“仆碑”生發(fā)出“深思慎取”的觀點(diǎn),這兩個(gè)觀點(diǎn)彼此有聯(lián)系嗎?作者游褒禪山,本來是一次平常的游歷活動(dòng),但卻從中悟出了人生哲理──從前洞后洞游人的多少悟出“夷以近,則游者眾;險(xiǎn)以遠(yuǎn),則至者少”,從“入之愈深,其進(jìn)愈難,而其見愈奇”悟出“而世之奇?zhèn)?、瑰怪、非常之觀,常在于險(xiǎn)遠(yuǎn)”;由此再引申一步,就得出了“非有志者不能至”的結(jié)論。然后將這次游山而未能“極夫游之樂”的教訓(xùn)升華到理論上來,具體分析了“至”的幾個(gè)條件,最后得出“盡吾志”的觀點(diǎn)──這正是“求思之深而無不在”的結(jié)果。由此可見,“盡吾志”的觀點(diǎn)跟“深思慎取”的觀點(diǎn)是有聯(lián)系的:“盡吾志”的觀點(diǎn)是在“深思慎取”的基礎(chǔ)上產(chǎn)生的;有了這個(gè)觀點(diǎn),又能反過來促使人們“深思慎取”,二者是相輔相成的。

  • 人教版高中語文必修3《錦瑟》教案2篇

    人教版高中語文必修3《錦瑟》教案2篇

    【參考】“滄海月明珠有淚,藍(lán)田日暖玉生煙。”滄海中的珍珠只有在明月之夜,才能流下晶瑩的淚花;藍(lán)田下的美玉只有在日暖之時(shí),才能升騰飄逸的煙霞。物猶如此,人當(dāng)如是?!皽婧T旅鳌迸c“藍(lán)田日暖”優(yōu)美意境的創(chuàng)設(shè),不僅僅是詩(shī)人精妙絕倫藝術(shù)素養(yǎng)的表現(xiàn)和揮灑,更是詩(shī)人回答人生價(jià)值的標(biāo)準(zhǔn)和尺度。詩(shī)人以物推人,拓展深化了詩(shī)作的主題,整篇的閃光點(diǎn)在此,魂亦在此?!緟⒖肌俊按饲榭纱勺窇?,只是當(dāng)時(shí)已惘然。”追憶過去,盡管自己以一顆浸滿血淚的真誠(chéng)之心,付出巨大的努力,去追求美好的人生理想,可“五十弦”如玉的歲月、如珠的年華,值得珍惜之時(shí)卻等閑而過;面對(duì)現(xiàn)實(shí):戀人生離、愛妻死別、盛年已逝、抱負(fù)難展、功業(yè)未建……,幡醒悟之日已風(fēng)光不再。如泣如訴的悲劇式結(jié)問,又讓詩(shī)人重新回到對(duì)“人生價(jià)值到底是什么?到底該怎樣實(shí)現(xiàn)?”深深的思考和迷惑之中,大大增強(qiáng)了詩(shī)作的震撼力。

  • 人教版高中語文必修3《多思善想 學(xué)習(xí)選取立論的角度》教案2篇

    人教版高中語文必修3《多思善想 學(xué)習(xí)選取立論的角度》教案2篇

    1、變換角度,多向思維(多向思維要求思維能針對(duì)問題,從不同角度,用多種方法去思考問題。對(duì)于作文而言,就是要使學(xué)生學(xué)會(huì)對(duì)同一問題,同一素材,同一題目,同一體裁的不同進(jìn)行區(qū)分。)請(qǐng)學(xué)生從這則材料中分析出幾個(gè)角度,準(zhǔn)備課堂交流:19世紀(jì)法國(guó)著名科幻小說家儒勒?凡爾納,一生寫了104部科幻小說。當(dāng)初他的第一部科幻小說《氣球上的星期五》接連被15家出版社退回。他當(dāng)時(shí)既痛苦又氣憤,打算將稿子付之一炬。他妻子奪過書稿,給他以鼓勵(lì)。于是他嘗試著走進(jìn)第16家出版社。經(jīng)理赫哲爾閱讀后,當(dāng)即表示同意出版,還與儒勒?凡爾納簽訂了為期20年的寫作出版合同。這則材料敘述時(shí)沒有一定的中心,屬于開發(fā)性材料,分析材料中人物、人物關(guān)系、故事的不同側(cè)面,可以從不同角度得出結(jié)論:

  • 人教版高中語文必修3《馬嵬(其二)》教案2篇

    人教版高中語文必修3《馬嵬(其二)》教案2篇

    結(jié)合歷史自古以來,江山美人歷來都是引無數(shù)英雄豪杰競(jìng)折腰的,如果說英雄選擇了美人卻丟了江山,把所有罪名都?xì)w結(jié)于“女人是禍水”。但是,紂王無道,和有了妲己有必然的聯(lián)系嗎?有人說妲己壞透了,壞透了的妲己如果不是取得紂王的信任是壞不起來的,紂王聽信了妲己的讒言,聽與不聽決定權(quán)在紂王,而不在妲己。強(qiáng)勢(shì)永遠(yuǎn)在紂王一邊。再來看看西施和楊貴妃:西施是作為越國(guó)貢獻(xiàn)給吳國(guó)的供品來到吳王夫差的身邊的,楊貴妃更是先是李隆基的兒媳婦被看中而得寵的。所以,西施和楊貴妃這兩個(gè)可憐的女人根本沒有自己的獨(dú)立選擇,沒有獨(dú)立的愛情,如果沒有西施,就會(huì)有南施,或北施;如果沒有楊貴妃,就會(huì)有李貴妃,王貴妃,總之什么施,什么妃是不能少的,因?yàn)槟鞘菂峭鹾屠盥』男枰?/p>

  • 人教版高中語文必修5《歸去來兮辭(并序)》教案

    人教版高中語文必修5《歸去來兮辭(并序)》教案

    【教學(xué)目標(biāo)】1.理解作者反抗黑暗,辭官歸田,不與當(dāng)時(shí)黑暗的上層社會(huì)同流合污而熱愛田園生活的積極精神,學(xué)習(xí)其高潔的理想志趣和堅(jiān)定的人生追求。2.掌握“胡、奚、曷、焉、何”五個(gè)疑問代詞,歸納“行、引、乘、策”等四個(gè)詞的一詞多義,了解“以、而、之、兮、來”等文言虛詞的用法。3.背誦全文?!窘虒W(xué)重點(diǎn)】1.了解作者辭官歸田的原因,深刻體味詩(shī)人鄙棄官場(chǎng),熱愛田園的無限欣喜之情。2.背誦全文?!窘虒W(xué)難點(diǎn)】1.理解記述中滲透出的或喜或哀,或決絕或猶疑的復(fù)雜感情。2.歸納實(shí)詞、虛詞的用法,掌握省略句、倒裝句兩種句式?!窘叹邷?zhǔn)備】投影儀投影膠片【課時(shí)安排】2課時(shí)【教學(xué)過程】第一課時(shí)[教學(xué)要點(diǎn)]了解陶淵明及其作品。讀課文,利用注釋、工具書,初步把握文章,朗讀課文,找出押韻的字,由押韻歸納各層大意,幫助學(xué)生理清背誦思路,背誦全文。[教學(xué)步驟]一、導(dǎo)語《桃花源記》是我們?cè)诔踔薪佑|過的陶淵明的作品。師生一同背誦?!短一ㄔ从洝分杏崎e自得的田園生活正是作者精神追求的形象反映。今天我們學(xué)習(xí)的《歸去來兮辭》正是作者決別官場(chǎng),同上層社會(huì)分道揚(yáng)鑣的宣言書。

  • 人教版高中語文必修3《勸學(xué)》教案2篇

    人教版高中語文必修3《勸學(xué)》教案2篇

    五.研習(xí)第一段:1.誦讀指導(dǎo)要處理好句中停頓2.請(qǐng)學(xué)生對(duì)照注釋翻譯本段重點(diǎn)詞句:學(xué)不可以已已:停止。青,取之于藍(lán)而青于藍(lán)于:從;比。木直中繩中:zhàng符合,合于。雖有槁暴,不復(fù)挺者,揉使之然也有通又,揉通煣,以火烘木,使其彎曲。然:這樣。翻譯:故木受繩則直,金就礪則利,君子博學(xué)而日參省乎己,則知明而行無過矣。所以木材經(jīng)墨線畫過(再用斧鋸加工)就直了,金屬刀劍拿到磨刀石上(磨過)就鋒利了,君子廣博地學(xué)習(xí)并且每天對(duì)自己檢驗(yàn)反省,就能智慧明達(dá),行為沒有過錯(cuò)了。3.本段是從哪個(gè)角度論述中心論點(diǎn)的?明確:本段是從學(xué)習(xí)的意義這個(gè)角度論述中心論點(diǎn)的。荀子認(rèn)為人的知識(shí)、道德、才能都不是天生成的,而是后天不斷學(xué)習(xí)獲得的,學(xué)習(xí)的意義十分重大,所以學(xué)習(xí)不能停止。4.本段中幾個(gè)比喻句是為了說明什么道理?學(xué)生討論發(fā)言,教師明確:

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 人教版高中語文必修2《就任北京大學(xué)校長(zhǎng)之演說》教案2篇

    人教版高中語文必修2《就任北京大學(xué)校長(zhǎng)之演說》教案2篇

    (現(xiàn)狀:①對(duì)于教員,不能以誠(chéng)相待,禮敬有加,只是利用耳。2段:因做官心切,對(duì)于教員,則不問其學(xué)問淺深,唯問其官階之大小。官階大者,特別歡迎,蓋唯將來畢業(yè)有人提攜。②對(duì)于同學(xué)校友,不能開誠(chéng)布公,道義相勖。)他的第三點(diǎn)要求是,要求青年學(xué)子。這是從個(gè)人涵養(yǎng)方面來說的。尊敬師長(zhǎng),團(tuán)結(jié)友愛,互相勉勵(lì),共同提高,是建設(shè)良好校風(fēng)必須具備的條件。端正學(xué)風(fēng),改善校風(fēng),就是為培養(yǎng)學(xué)術(shù)研究新風(fēng)氣創(chuàng)造條件。全校上下樹立了新風(fēng)尚,學(xué)校的學(xué)術(shù)氣也就會(huì)很快濃起來。這也是貫徹“思想自由”的辦學(xué)方針,不可或缺的措施。蔡元培先生在他這次演講中,始終是圍繞著他的辦學(xué)方針來闡述的。(四)蔡先生提出兩點(diǎn)計(jì)劃,目的為何?思考、討論、明確:一曰改良講義,以期學(xué)有所得,能裨實(shí)用。

上一頁34567891011121314下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!