解析:本題是要求兩個未知數(shù),即3和4的權(quán).所以應把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結(jié):利用平均數(shù)的公式解題時,要弄清數(shù)據(jù)及相應的權(quán),避免出錯.三、板書設計平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關平均數(shù)問題的解決,提升學生的數(shù)學應用能力.通過解決實際問題,體會數(shù)學與社會生活的密切聯(lián)系,了解數(shù)學的價值,增進學生對數(shù)學的理解和增加學好數(shù)學的信心.
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個3之間1的個數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個有理數(shù)都可以化為分數(shù)形式,而無理數(shù)則不能.探究點二:借助計算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計x的整數(shù)部分,看它在哪兩個連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
初讀課文,學習字詞?! ?.提出讀書要求:默讀課文,一邊讀一邊畫出不認識的字和不理解的詞,并借助詞典等學習工具書理解?! ?.教師檢查學生學習情況?! 。?)檢查生字讀音。 小丘( qiū)渲染(xuàn )迂回( yū)蒙古包( měng ) 襟飄帶舞( jīn )鄂溫克(è) ?。?)指導易混淆的字?! 敖蟆笔亲笥医Y(jié)構(gòu),左邊是“衤”,與衣服有關,表示衣服胸前的部分?! 皾笔亲笥医Y(jié)構(gòu),右邊下面是“止”,不能寫成“上”。 “裳”下面是“衣”,與衣服有關?! 拔ⅰ保褐虚g部分不能少一橫。 ?。?)理解較難的詞語?! 、俾?lián)系上下文理解詞語?! 〔菰闲熊囀譃⒚?,只要方向不錯,怎么走都可以?! 盀⒚摗钡囊馑际牵簽t灑自然,不拘束。這個詞語反映了草原的廣闊無邊?! 、诶斫狻敖箫h帶舞”一詞的意思,可以出示蒙古族鮮艷的服裝來分析,意思是:衣襟和裙帶隨風舞動?! 、邸按渖鳌币辉~可以從難字入手理解,比如“欲”在這里表示“將要”的意思,“翠色欲流”就是綠得太濃了,將要流下來,寫出了草原的綠,是充滿生命力的?! 、芏鯗乜耍何覈贁?shù)民族之一,聚居在內(nèi)蒙古自治區(qū)的東北部。
在探究估算方法的時候,教師要注重適時的引導,以免讓學生無從下手.在教學過程中一定要讓學生體會估算的實用價值,了解到“數(shù)學既來源與生活,又回歸到生活為生活服務”.(二)課堂評價的一些思考在教學中要多鼓勵學生用自己的語言表達他們的想法,在估算的過程中多給予適當?shù)囊龑Ш驮u價,讓學生逐步把握估算的方法,找到解決問題的信心.比如對“畫能掛上去嗎”這個問題情境,學生可能提出不同的看法,有些學生可能認為可以掛上去,因為人還有身高,完全可以彌補梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學生可能認為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應該給予肯定,這樣才能激發(fā)學生思考問題的熱情,調(diào)動學生探究問題的積極性.作為教師,一定要尊重學生的個體差異,滿足多樣化的學習需要,鼓勵探究方式、表達方式和解題方法的多樣化.
第一環(huán)節(jié):回顧引入活動內(nèi)容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動目的:回顧上節(jié)知識,為本節(jié)課的展開打好基礎.教學效果:學生舉手發(fā)言,提問個別學生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個三角形的三條邊對應相等,那么這兩個三角形全等.(2)如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等.(3)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形.(4)如果一個四邊的對角線相等,那么這個四邊形是矩形.(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項,“那么……”是由已知事項推斷出的結(jié)論.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關于字母系數(shù)的方程組,解方程組即可.三、板書設計解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學生的探究有很好的認知基礎,探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導學生充分思考和體驗轉(zhuǎn)化與化歸思想,增強學生的觀察歸納能力,提高學生的學習能力.
一、情境導入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術(shù)平方根的概念【類型一】 求一個數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負數(shù)的算術(shù)平方根,只要找到一個非負數(shù)的平方等于這個非負數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個數(shù)的算術(shù)平方根時,首先要弄清是求哪個數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負數(shù)的算術(shù)平方根常借助平方運算,因此熟記常用平方數(shù)對求一個數(shù)的算術(shù)平方根十分有用.
2.法解二元一次方程組,是提升學生求解二元一次方程的基本技能課,在例題的設置上充分體現(xiàn)化歸思想.2.在學習二元一次方程組的解法中,關鍵是領會其本質(zhì)思想——消元,體會“化未知為已知”的化歸思想.因而在教學過程中教師通過對問題的創(chuàng)設,鼓勵學生去觀察方程的特點,在過手訓練中提高學生的解答正確率和表達規(guī)范性,提升學生學會數(shù)學的信心,激發(fā)學習數(shù)學的興趣.3.通過精心設計的問題,引導學生在已有知識的基礎上,自己比較、分析得出二元一次方程組的解法,在鞏固訓練活動中,加深學生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學生掌握知識、技能和方法,提高學習效率,而且還加深了對數(shù)學中通性和通法的認識,體會學習數(shù)學和研究數(shù)學的規(guī)律,提升數(shù)學思維能力.
1.細講概念、強化訓練要想讓學生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學,對提高學生的思維水平是很有必要的.概念教學過程中要做到:講清概念,加強訓練,逐步深化.“講清概念”就是通過具體實例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當然零的算術(shù)平方根是零.
第一環(huán)節(jié)感受生活中的情境,導入新課通過若干圖片,引導學生感受生活中常常需要確定位置.導入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據(jù)呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個點的位置一般需要一個數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個點的位置呢?請同學們根據(jù)生活中確定位置的實例,請談談自己的看法.2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個座位一般需要幾個數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學有所用(1) 你能用兩個數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?
本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內(nèi)容通過學生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.(三)強化知識間聯(lián)系,注意糾錯既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調(diào)這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.
求證:直角三角形的兩個銳角互余.解析:分析這個命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語言變成符號語言,畫出圖形,最后再經(jīng)過分析論證,并寫出證明的過程.三、板書設計命題分類公理:公認的真命題定理:經(jīng)過證明的真命題證明:推理的過程經(jīng)歷實際情境,初步體會公理化思想和方法,了解本教材所采用的公理,讓學生對真假命題有一個清楚的認識,從而進一步了解定理、公理的概念.培養(yǎng)學生的語言表達能力.
探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內(nèi)無水).在這三個過程中,洗衣機內(nèi)的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關系的圖象大致為()解析:∵洗衣機工作前洗衣機內(nèi)無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設計函數(shù)定義:自變量、因變量、常量函數(shù)的關系式三種表示方法函數(shù)值函數(shù)的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數(shù)學活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數(shù)概念的理解.
已知xm-n+1y與-2xn-1y3m-2n-5是同類項,求m和n的值.解析:根據(jù)同類項的概念,可列出含字母m和n的方程組,從而求出m和n.解:因為xm-n+1y與-2xn-1y3m-2n-5是同類項,所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當m=4,n=3時,xm-n+1y與-2xn-1y3m-2n-5是同類項.方法總結(jié):解這類題,就是根據(jù)同類項的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設計用加減法解二元一次方程組的步驟:①變形,使某個未知數(shù)的系數(shù)絕對值相等;②加減消元;③解一元一次方程;④求另一個未知數(shù)的值,得方程組的解.進一步理解二元一次方程組的“消元”思想,初步體會數(shù)學研究中“化未知為已知”的化歸思想.選擇恰當?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學生的觀察、分析問題的能力.
解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標確定位置,熟記位置的確定需要橫向與縱向的兩個數(shù)據(jù)是解題的關鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡圖,文化宮在D2區(qū),體育場在C4區(qū),據(jù)此說明醫(yī)院在________區(qū),陽光中學在________區(qū).解析:本題首先給出的是表示文化宮和體育場的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來確定相關位置.三、板書設計確定位置有序?qū)崝?shù)對方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實生活中常用的定位方法呈現(xiàn)給學生,進一步豐富學生的數(shù)學活動經(jīng)驗,培養(yǎng)學生觀察、分析、歸納、概括的能力.教學過程中創(chuàng)設生動活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學生創(chuàng)造自主學習、合作交流的機會,促使他們主動參與、積極探究.
五、總結(jié)與談感受師:今天,我們學習了“比多少”(出示課題),同學們學會了用“多一些、少一些、多得多、少得多”來說明兩個數(shù)之間的大小關系,還玩了猜數(shù)游戲,你們覺得這樣的學習有趣嗎?有什么感受呢?[總評]本課教學設計體現(xiàn)如下幾個特點:1、 注重創(chuàng)設生活情境。從學生熟知的生活事例,感興趣的事物(三缸小金魚)引入,為學生提供了富有生活氣息的具體情境。學生在具體情境中學習興趣濃厚,積極性高漲,課堂氣氛活躍,使學生以最佳的思維狀態(tài)投入到學習中。2、注重體現(xiàn)學習方式。這節(jié)課學習過程,既注重培養(yǎng)學生獨立思考的學習習慣,也注重培養(yǎng)學生合作交流的能力,不但學生個性思維方法得到了充分的展現(xiàn),而且學生在合作交流中獲取自己需要的信息,利于學生全面的發(fā)展。3、注重創(chuàng)設輕松課堂。猜數(shù)游戲的設計,創(chuàng)設了輕松愉快的課堂氛圍,學生這樣氛圍中增長了知識,提高了能力,達到了寓教于樂的教學課堂境界,對學生學習數(shù)學興趣產(chǎn)生不可量化的效果。
一、說教材我說課的內(nèi)容是人教版小學數(shù)學三年級下冊中的“除數(shù)是一位數(shù)的除法單元的整理與復習”。這個單元的教學是在學生掌握了整十、整百的數(shù)除以一位數(shù)的口算、除法的估算和筆算以及驗算的基礎上進行的,它是以后學習較復雜除法的基礎。本節(jié)課的教學重點是通過整理與復習,學生進一步理解除法的算理,掌握算法,提高計算能力,教學難點是在整理與復習中形成知識網(wǎng)絡,在學習中學會整理與復習的方法。眾所周知,整理和復習是為教學中的單元復習、單元知識小結(jié)而設計和編排的,以幫助學生達到“再現(xiàn)、整理、鞏固已學知識,并使之系統(tǒng)化”的目的。根據(jù)復習課型的這一特點和學生的實際情況,我把教學目標分為三個方面:(1)知識性目標:通過復習使學生把“除數(shù)是一位數(shù)的除法”這一單元的有關計算知識系統(tǒng)化,條理化。(2)能力目標:使學生學會在系統(tǒng)復習的基礎上理清知識的脈絡,進行分類歸納、有序整理的學習方法,提高學習能力。(3)情感目標:通過自主探索與合作學習,培養(yǎng)學生的創(chuàng)新意識和團隊精神,滲透生活中處處有數(shù)學的觀念,并通過學生解決實際問題,感受數(shù)學與實際生活的密切聯(lián)系。
(二)、操作--“空間與圖形”學習的基本途徑 皮亞杰曾說:“數(shù)學的抽象仍是屬于操作性質(zhì)的,它的發(fā)生發(fā)展要經(jīng)過連續(xù)不斷的階段。而其最初的來源又是十分具體的行動?!币蛐W生的年齡特點和認知規(guī)律(動作感知--建立表象--形成概念),決定小學生的數(shù)學學習離不開操作感知這一基本途徑。 本案例中,通過讓學生折一折體會長方形、正方形邊的特征;讓學生用幾個相同的長方形、三角形拼一拼,感受圖形從簡單到復雜的變化規(guī)律;最后一題讓學生自己畫一畫,看看需要幾個長方形等。教師積極創(chuàng)造條件,組織學生動手操作,以此來參與知識的形成過程,使他們在親身體驗和探索中認識和感悟圖形的特征,理解和掌握圖形拼組的規(guī)律所在,并發(fā)展學生的思維,提高實踐能力。如果只視學生為接受知識的容器,向?qū)W生灌輸知識,這節(jié)課幾分鐘就可以搞定,但是學生對長方形對邊相等、正方形四條邊相等,圖形拼組中的很多細節(jié)都會是干巴巴的,所學的知識必然是有“形”無“神”的死知識。
一、說教材《赫爾墨斯和雕像者》選自人教版七年級上冊第六單元《寓言四則》中的第一則寓言,本單元主要是一些有趣的故事,通過故事揭示道理。學情分析:學生在小學已經(jīng)學過一些寓言故事的基礎上,能夠聯(lián)系自己的生活體驗積極思考和表達自己的觀點。(根據(jù)新課標要求、寓言的特征和學生的實際情況)二、說教學目標知識與能力目標:了解寓言以及《伊索寓言》的知識;過程與方法目標:品味描寫人物心理變化等細節(jié)描寫,分析赫爾墨斯的性格特征;情感態(tài)度與價值觀目標:正確理解寓意,樹立正確的人生處事態(tài)度。三、說重難點(本單元要求:學習《伊索寓言》時重在讓學生揣摩人物的語言、表情。)重點:揣摩人物的心理變化等細節(jié)描寫。難點:多元理解寓意,培養(yǎng)學生發(fā)散思維。
(一)觀圖激趣、設疑導入 1、(PPT課件出示復習題)2、引導學生復習比例尺是圖上距離與實際距離的比,并進行相應的計算。生1:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。生2:圖上距離∶實際距離=比例尺或=比例尺。(PPT課件出示問題)在一幅地圖上量得A地點到B地點的圖上距離是5 cm,已知這幅地圖的比例尺是1∶4000000,那么A地點到B地點的實際距離是多少千米?師:在這里已知的條件有哪些?生1:知道兩地的圖上距離是5 cm。生2:知道比例尺是1∶4000000。師:要解決的問題是什么?生:計算兩地的實際距離是多少千米。師:這節(jié)課我們就接著來學習比例尺的應用,學習如何利用比例尺來解決實際問題,也就是已知比例尺和圖上距離,求實際距離。(板書課題)【設計意圖】通過把復習題中的習題變換已知和未知條件來變成本節(jié)課要解決的問題,使學生產(chǎn)生濃厚的興趣,并且,也有助于培養(yǎng)學生舉一反三、觸類旁通的能力,使學生認識到數(shù)學知識的靈活性。(二)探究新知探究學習例2,已知比例尺和圖上距離,求實際距離。1、PPT課件出示P54例3。下面是北京軌道交通路線示意圖。地鐵1號線從蘋果園站至四惠東站在圖中的長度大約是7.8 cm,從蘋果園站至四惠東站的實際長度大約是多少千米?2、引導學生分析探究:師:從例題中可以知道哪些已知條件?生:可以知道兩站的圖上距離大約是7.8cm。師:這是從題目中直接讀出來的,那么從所給的圖中還能觀察到什么條件呢?生:可以知道比例尺是1∶400000。布置學生小組討論怎么樣解決問題。學生以小組為單位進行合作學習,教師進行指導。3、匯報學習成果,師生共同探究:師:你們是怎么解答的?生1:通過列方程來解答的。生2:根據(jù)題意,可以先設實際長度為x cm,再根據(jù)“圖上距離∶實際距離=比例尺”,列方程解答。師:解答時要注意什么?生1:要求實際距離是多少千米,但已知的圖上距離是多少厘米,可以先設實際距離為x cm,算出實際距離的厘米數(shù)后,再化成千米數(shù)。生2:根據(jù)“圖上距離∶實際距離=比例尺”,可以用解比例的方法求出實際距離。4、完成解答:(板書解題過程)圖上距離:實際距離=比例尺解:設從蘋果園站到四惠東站的實際長度是x cm。=x=7.8×400000x=31200003120000 cm=31.2 km答:從蘋果園站到四惠東站的實際長度大約是31.2 km。5、拓展延伸:師:我們除了用方程解答之外,還可以用什么方法解答?生:可以用算術(shù)方法解答。師:可以怎樣來分析呢?生:在“圖上距離∶實際距離=比例尺”中,實際距離既可看成分數(shù)的分母,又可看成除法中的除數(shù),所以可得出實際距離=圖上距離÷比例尺。師:我們來共同完成解答:(板書過程)圖上距離:比例尺=實際距離7.8÷=3120000(cm)3120000 cm=31.2 km答:從蘋果園站到四惠東站的實際長度大約是31.2 km。6、牛刀小試。(1)師:我們一起來做兩個練習題,看我們對新知識的掌握程度如何。(PPT課件出示)①教材P54做一做。先把教材P54做一做的圖中的線段比例尺改寫成數(shù)值比例尺,再用直尺量出圖中河西村與汽車站之間的距離是多少厘米,并計算出兩地的實際距離大約是多少。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。