非常清楚,共有6個(gè)自然段,第一個(gè)自然段是總寫手指的特點(diǎn),2——5自然段是分寫五個(gè)手指的不同特點(diǎn),最后一個(gè)自然段又總寫,點(diǎn)明了文章的中心。文章的語(yǔ)言樸實(shí)又富有風(fēng)趣,采用了擬人化的手法將手指的不同特點(diǎn)寫得淋漓盡致。這樣的寫作順序及寫作方法是學(xué)生學(xué)習(xí)的一個(gè)重點(diǎn)。這是一篇略讀課文,可用一個(gè)課時(shí)完成教學(xué)。根據(jù)以上教材的特點(diǎn)以及新課標(biāo)所特別關(guān)注的學(xué)生的“情感態(tài)度與價(jià)值觀、過程與方法、知識(shí)與能力”這三個(gè)維度的理念,我制定了以下教學(xué)目標(biāo):1、會(huì)讀帶有拼音的生詞,能聯(lián)系上下文理解詞語(yǔ)“窈窕、堂皇、渺小、附庸、養(yǎng)尊處優(yōu)”的意思;2、能正確、流利、有感情地朗讀課文,了解五根手指的不同特點(diǎn),了解作者描寫手指的寫作順序及寫作方法。這也是本文的教學(xué)重點(diǎn)。3、體會(huì)到任何事物都各有所長(zhǎng)各有所短的道理,以及團(tuán)結(jié)合作的重要性;這也是本文的教學(xué)難點(diǎn)。
一、說教材《跳水》是小學(xué)語(yǔ)文五年級(jí)下冊(cè)的一篇精讀課文。訓(xùn)練主題是:①抓住文章中的重點(diǎn)詞句,體會(huì)其表達(dá)效果。②揣摩文章表達(dá)的順序,學(xué)習(xí)基本的表達(dá)方法。本單元訓(xùn)練主題與各單元文化主題的融合:抓關(guān)鍵詞句,品讀文字中的生活,感受生活中智慧的靈光。《跳水》講述了發(fā)生在一艘外國(guó)帆船上發(fā)生的事. 一只猴子把船長(zhǎng)兒子戴的帽子掛到了桅桿頂端最高的橫木一頭,孩子為了追回帽子,走上橫木,在萬(wàn)分危急的時(shí)刻船長(zhǎng)急中生智,命令兒子跳水,使孩子轉(zhuǎn)危為安。教材的編排意圖是:在讀懂課文的基礎(chǔ)上,學(xué)習(xí)船長(zhǎng)在危急中,冷靜機(jī)智和果斷處理問題的方法和了解作者記敘一件事情經(jīng)過的方法。本篇課文情節(jié)驚險(xiǎn),扣人心弦,易于激起小學(xué)生的閱讀興趣,形象逼真的教材插圖給人以身臨其境之感。
知識(shí)與技能目標(biāo):1. 能正確說出三元一次方程(組)及其解的概念,能正確判別一組數(shù)是否是三元一次方程(組)的解;2. 會(huì)根據(jù)實(shí)際問題列出簡(jiǎn)單的三元一次方程或三元一次方程組。過程與方法目標(biāo):1. 通過加深對(duì)概念的理解,提高對(duì)“元”和“次”的認(rèn)識(shí)。2. 能夠逐步培養(yǎng)類比分析和歸納概括的能力,了解辯證統(tǒng)一的思想。情感態(tài)度與價(jià)值觀目標(biāo):通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
(4)判斷中進(jìn)行教學(xué)內(nèi)容的遞深,形成了反思——學(xué)習(xí)——強(qiáng)化的整個(gè)學(xué)習(xí)過程。在學(xué)生做出“6是倍數(shù)”的正確判斷之后,并不簡(jiǎn)單換章,而是以此為契機(jī)“教學(xué)找一個(gè)數(shù)的因數(shù)”以談話導(dǎo)入,形成知識(shí)相互的聯(lián)系與區(qū)別,“談話:必須說清誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個(gè)數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”(5)討論互評(píng),自主學(xué)習(xí)放手讓學(xué)生學(xué)習(xí)找一個(gè)數(shù)的因數(shù),從無(wú)序到有序,從自尋到互學(xué),請(qǐng)學(xué)生板書,學(xué)生評(píng)價(jià),“提問:你是用什么方法找到一個(gè)數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指導(dǎo),掌握不失總結(jié)如:提問:5為什么不是36的因數(shù)?(因?yàn)?6÷5不能整除,有余數(shù))
從課前學(xué)生欣賞春天的美景入手,自然地過渡到小朋友去春游劃船,以激發(fā)學(xué)生的學(xué)習(xí)興趣。課件出示主題圖,先讓學(xué)生觀察小朋友來到美麗的公園劃船,玩得可開心了,再仔細(xì)觀察第二幅照片,讓學(xué)生幫助圖中小朋友解決問題,從而讓學(xué)生經(jīng)歷聯(lián)系上、下圖理解題意的過程,學(xué)會(huì)收集有用信息,在實(shí)際生活中發(fā)現(xiàn)問題,提出問題。初步學(xué)會(huì)列綜合算式,了解用遞等式計(jì)算來解決問題,并在實(shí)際意義的背景之下讓學(xué)生感受并理解乘除兩步運(yùn)算的運(yùn)算順序,會(huì)按從左到右的順序進(jìn)行運(yùn)算。并在實(shí)際問題解決的過程中,讓學(xué)生嘗試運(yùn)用分析、推理等方法分析問題,提高分析問題、解決問題的能力,從而也使學(xué)生獲得成功的體驗(yàn),樹立自信心。最后,通過幫小朋友“分礦泉水”、宣傳牌上三角形的數(shù)量、體育課上分組等練習(xí),加深學(xué)生對(duì)乘除兩步運(yùn)算算理的理解,從而提高讀圖、識(shí)圖、語(yǔ)言表達(dá)圖意和提出問題、解決問題的能力。
⒊演示操作法:直觀演示能給學(xué)生提供鮮明的感性材料,通過多種感官協(xié)同作用,利用學(xué)生在操作中建立表象,使抽象思維轉(zhuǎn)化為形象思維。⒋談話法:運(yùn)用師生之間的談話組織教學(xué),既可使學(xué)生的思維方向明確,又便于教師了解學(xué)生理解和掌握知識(shí)的程度。⒌練習(xí)法:通過各種練習(xí),加深學(xué)生對(duì)知識(shí)的理解和掌握,形成熟練的解題技能,進(jìn)一步發(fā)展學(xué)生的思維。(2)、說學(xué)法古人云:“教之以魚,只供一餐,授之以漁,受用終生”,教師既管教,又要管學(xué),把教落在學(xué)上,重點(diǎn)是把學(xué)習(xí)方法教給學(xué)生,使學(xué)生樂學(xué)、會(huì)學(xué),教學(xué)中,讓學(xué)生學(xué)習(xí)并初步掌握的學(xué)習(xí)方法有:⒈歸納法:通過例題的教學(xué),經(jīng)過理解、分析、歸納推導(dǎo)出除法的意義。⒉觀察法:指導(dǎo)學(xué)生仔細(xì)觀察,學(xué)會(huì)找知識(shí)的生長(zhǎng)點(diǎn)和解題的關(guān)鍵所在。
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無(wú)意義的條件是x=13,故選C.方法總結(jié):分式無(wú)意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個(gè)條件缺一不可.三、板書設(shè)計(jì)1.分式的概念:一般地,如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無(wú)意義的條件:當(dāng)B≠0時(shí),分式有意義;當(dāng)B=0時(shí),分式無(wú)意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時(shí),分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨(dú)立思考、小組合作,完成對(duì)分式概念及意義的自主探索.提出問題讓學(xué)生解決,問題由易到難,層層深入,既復(fù)習(xí)了舊知識(shí)又在類比過程中獲得了解決新知識(shí)的途徑.在這一環(huán)節(jié)提問應(yīng)注意循序性,先易后難、由簡(jiǎn)到繁、層層遞進(jìn),臺(tái)階式的提問使問題解決水到渠成.
把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計(jì)算出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1?、伲?(1-x)≤5?、冢散俚脁<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對(duì)于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計(jì)一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時(shí),先解每一個(gè)不等式,再確定各個(gè)不等式組的解集的公共部分.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時(shí)是在上一課時(shí)的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時(shí)要給學(xué)生足夠主動(dòng)權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵(lì)學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時(shí)提高學(xué)生的邏輯思維能力.
方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設(shè)計(jì)1.等腰三角形的判定定理:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時(shí),應(yīng)結(jié)合圖形,聯(lián)想我們已學(xué)過的定義、公理、定理等知識(shí),尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時(shí)學(xué)會(huì)分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號(hào)的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯(cuò)誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個(gè)少算的內(nèi)角的取值范圍.探究點(diǎn)二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個(gè)外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個(gè)多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個(gè)外角,求邊數(shù)可直接利用外角和除以這個(gè)角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運(yùn)用一個(gè)多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個(gè)多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個(gè)多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.
解:(1)設(shè)第一次購(gòu)買的單價(jià)為x元,則第二次的單價(jià)為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗(yàn),x=6是原方程的解.(2)第一次購(gòu)買水果1200÷6=200(千克).第二次購(gòu)買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進(jìn)價(jià)為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問題分解成購(gòu)買水果和賣水果兩部分分別考慮,掌握這次活動(dòng)的流程.三、板書設(shè)計(jì)列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗(yàn)根,還要看方程的解是否符合題意;最后作答.
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當(dāng)分子、分母是多項(xiàng)式時(shí)應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計(jì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變.2.符號(hào)法則:分式的分子、分母及分式本身,任意改變其中兩個(gè)符號(hào),分式的值不變;若只改變其中一個(gè)符號(hào)或三個(gè)全變號(hào),則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢(shì)探究分式變號(hào)法則.在每個(gè)活動(dòng)中,都設(shè)計(jì)了具有啟發(fā)性的問題,對(duì)各個(gè)知識(shí)點(diǎn)進(jìn)行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習(xí).一步一步的來完成既定目標(biāo).整個(gè)學(xué)習(xí)過程輕松、愉快、和諧、高效.
探究點(diǎn)二:列分式方程某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個(gè)數(shù)+10個(gè))÷實(shí)際每天生產(chǎn)的零件個(gè)數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計(jì)1.分式方程的概念2.列分式方程本課時(shí)的教學(xué)以學(xué)生自主探究為主,通過參與學(xué)習(xí)的過程,讓學(xué)生感受知識(shí)的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺性,體驗(yàn)類比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識(shí)在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.
【類型三】 分式方程無(wú)解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無(wú)解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無(wú)解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時(shí),此方程無(wú)解,此時(shí)m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時(shí),代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時(shí),代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無(wú)解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對(duì)使最簡(jiǎn)公分母為0的數(shù),分式方程無(wú)解不但包括使最簡(jiǎn)公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無(wú)解的數(shù).三、板書設(shè)計(jì)1.分式方程的解法方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程求解,再檢驗(yàn).2.分式方程的增根(1)解分式方程為什么會(huì)產(chǎn)生增根;(2)分式方程檢驗(yàn)的方法.
解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡(jiǎn)便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
證明:過點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時(shí),先必須已知一個(gè)條件,這個(gè)條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時(shí),一般要用到其中的兩條線互相重合.三、板書設(shè)計(jì)1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對(duì)等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個(gè)條件,就能得出另外的兩個(gè)結(jié)論.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
分式1x2-3x與2x2-9的最簡(jiǎn)公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡(jiǎn)公分母為x(x+3)(x-3).方法總結(jié):最簡(jiǎn)公分母的確定:最簡(jiǎn)公分母的系數(shù),取各個(gè)分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解.【類型二】 分母是單項(xiàng)式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡(jiǎn)公分母,找到各個(gè)分母應(yīng)當(dāng)乘的單項(xiàng)式,分子也相應(yīng)地乘以這個(gè)單項(xiàng)式.解:(1)最簡(jiǎn)公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡(jiǎn)公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡(jiǎn)公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二個(gè)分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個(gè)分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時(shí),可以把其中一個(gè)分母放到帶有負(fù)號(hào)的括號(hào)內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進(jìn)行運(yùn)算.三、板書設(shè)計(jì)1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號(hào)法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分?jǐn)?shù)的加減法類比得出同分母分式的加減法.易錯(cuò)點(diǎn)一是符號(hào),二是結(jié)果的化簡(jiǎn).在教學(xué)中,讓學(xué)生參與課堂探究,進(jìn)行自主歸納,并對(duì)易錯(cuò)點(diǎn)加強(qiáng)練習(xí).從而讓學(xué)生對(duì)知識(shí)的理解從感性認(rèn)識(shí)上升到理性認(rèn)識(shí).