(二)初讀課文,整體感知首先教師對作者進行簡單介紹,再要求學生速讀課文,讓學生初步感知課文內容,歸納全文思路,邊讀邊思考PPT上的問題。問題:全文可以分成幾部分?此環(huán)節(jié)意在激發(fā)學生的學習主動性,培養(yǎng)學生的自學能力。讀畢,我會對學生的自學情況進行檢查反饋,鼓勵學生踴躍發(fā)言,說出自己理解的寫作思路,最后教師對學生的答案進行概括和總結,此環(huán)節(jié)能夠讓學生對中國建筑的特征整體把握,夯實學習本文的基礎,同時感知課文,理清文章脈絡,實現(xiàn)長文短教,為析讀本文作好鋪墊。(三)析讀課文,質疑問難此環(huán)節(jié)是教學的重要階段,在這里,我會以新課標為基準,做到閱讀指向每一個學生的個體閱讀,同時在教學過程中遵循啟發(fā)性,循序漸進性的原則。此環(huán)節(jié)運用小組合作學習法、討論法和問答法分析中國建筑的特征。同學每四人為一小組討論PPT上展示的問題。
②癌癥患者在治療過程中,會有很大的身體損耗,而黃鱔有很好的滋補作用,適當吃一點黃鱔,既能夠為患者補充營養(yǎng),也能夠提高患者的身體免疫力。 (來源于報紙)經(jīng)過討論交流,每一組一名同學自主發(fā)言,老師點撥,最后形成小結??磥碓?要權威發(fā)布,不要道聽途說看內容 要事實清晰,不要模糊遺漏看立場 要客觀公允,不要情緒煽動看邏輯 要嚴謹準確,不要簡單斷言情感判斷 理性判斷 理性表達(四)活動三,重實踐新課標提到,語文課程應引導學生在真實的語言運用情境中,通過自主的語言實踐活動,積累經(jīng)驗,把握規(guī)律,培養(yǎng)能力。據(jù)此,我設計了以下貼近學生生活、可參與性強的活動。多媒體展示案例,仍然是先討論交流,再自主發(fā)言,說出案例有哪些問題。這是某校園論壇上的一則尋物啟示。
1.圈點、勾畫重要詞語評點的讀書習慣和方法。如全出描繪秋色的詞語,標出傳遞秋聲的詞語,點評北國故都秋色的詞語、南國秋色的詞語,攝取主要信息。2.口、耳、手、腦并用的讀書習慣和方法。如默讀、聽讀、跟讀時,不動筆墨不看書,不動思維不讀書。3.學以致用的遷移運用方法。如投影儀的練習設計,讓學生由品文到品讀詩詞等。四、說教學程序(一)導語激趣人們常說,良好的開端是成功的一半,因而導語也就顯得十分重要。好的導語能營造適宜的課堂氛圍,集中學生的注意力,調動學生的學習情緒,使學生對學習的內容產(chǎn)生濃厚的興趣。這篇課文的導語我是這樣來設計的:同學們,自古詩家多愛秋,因為秋是文人心中的一粒愁種子?!盁o邊落木蕭蕭下,不盡長江滾滾來?!边@是杜甫面對秋風登高而抒懷;“梧桐更兼細雨,到黃昏,點點滴滴。這次第,怎一個愁字了得?!边@是李清照面對秋雨而吟詠愁情。秋風秋雨愁煞人啦。
學生借助對對聯(lián)的賞析,回味杜甫窮年漂泊的一生,體會杜甫作為一個深受儒家思想影響的讀書人,忠君念闕,心系蒼生的偉大情懷。(這一設計理念源于孟子所云:“誦其文,讀其詩,不知其人,可乎?是以論其世也。”知人論世是鑒賞詩歌的第一步 )(二)研讀課文1、初讀,朗讀吟誦,感知韻律美。要求學生讀準字音,讀懂句意,體會律詩的節(jié)奏、押韻的順暢之美。2、再讀,披詞入情,感受感情美。讓學生用一個字概括這首詩的情感內容。(此教學設計是從新課標要求的文學作品應先整體感知,培養(yǎng)學生歸納推理的邏輯思維能力出發(fā)進行的設計。)其答案是一個“悲”字,由此輻射出兩個問題:詩人因何而“悲”?如何寫“悲”?(此問題設計順勢而出,目的在于培養(yǎng)學生探究問題的能力。)
【教學目標】根據(jù)課程標準的要求,結合魯迅雜文的特點以及學生的實際情況,制定如下目標:⑴知識與技能目標:把握文章思路、結構和觀點;揣摩魯迅雜文犀利、幽默、詼諧的語言風格。⑵過程與方法目標:學習運用因果論證和比喻論證的寫作手法。⑶情感態(tài)度及價值觀目標:正確對待中外文化遺產(chǎn),樹立辯證唯物主義和歷史唯物主義的觀點?!窘虒W重難點】根據(jù)教學目標和學生實情,確定教學重點如:學習因果論證的寫作方法,體會作者推理的邏輯性;揣摩魯迅雜文犀利、幽默、詼諧的語言風格。確定教學難點如:學習掌握比喻論證的方法;明確為什么要實行“拿來主義”,著重認識送去主義的實質和危害。二、教學方法教學應堅持“以學生為主體”的原則,盡可能發(fā)揮學生學習的能動性和主動性,培養(yǎng)學生獨立思考的能力,調動學生學習積極性,因此本文采用“疑問教學法”相對合適。
蒲松齡(1640——1715)字留仙,一字劍臣,號柳泉居士。山東淄川(今淄博)人。清代小說家,出身于沒落地主家庭。天資聰明,學問深厚,十九歲時連中縣、府、道三個第一,但此后屢應省試不第,年七十一,始被補上歲貢生,一生憂郁自傷,窮愁潦倒。從二十歲左右開始寫作,歷時二十余年,創(chuàng)作了文言短篇小說集《聊齋志異》。另有詩、文集《聊齋詩集》、《聊齋文集》。《聊齋志異》是蒲松齡傾力創(chuàng)作的文言短篇小說集。“聊齋”是作者的書齋名?!爸井悺本褪怯浭龌ㄑ砑捌渌恍┗恼Q不經(jīng)的奇聞軼事。作者巧妙地通過這些離經(jīng)虛幻的故事,大膽地揭露社會多方面的黑暗現(xiàn)實,贊美了青年男女敢于沖破封建禮教樊籬的精神,抒發(fā)了作者自己滿腔的“孤憤”。郭沫若曾題蒲松齡故居聯(lián):“寫鬼寫妖,高人一等;刺貪刺虐,入木三分?!崩仙犷}聯(lián):“鬼狐有性格,笑罵成文章?!焙喢鞫鷦拥氐莱隽恕读凝S志異》的文學特點。
一年來,學校各項工作取得了突出成績。德育工作不斷創(chuàng)新,學校常規(guī)檢查扎實有效,規(guī)范了學生的行為,使學生行為更文明,學習更進步,學生精神面貌煥然一新。課堂教學引入了合作教學理念和方法,合作創(chuàng)新教學初見成效,電化教育有了突破性進展,學校文體教育搞得扎扎實實。學校的辦學條件得到了很大的改善,建設高檔次的學生微機室,使學生得以上網(wǎng)學習,建設教育寬帶網(wǎng)工程,每個教室大屏幕彩電和視頻展示臺的廣泛使用,以及多媒體教室和校園網(wǎng)的建成,大大優(yōu)化了學習條件,激發(fā)了學習興趣,提高了教學效率
∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標,∴S△EFP=4/3c2=12,∴c=3,即P點坐標為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標準方程.(1)兩個焦點的坐標分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標準方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設雙曲線的標準方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標準方程為x^2/3-y^2/5=1.(3)當焦點在x軸上時,可設雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標準方程為x^2/8-y^2/8=1.當焦點在y軸上時,可設雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標準方程為x^2/8-y^2/8=1.
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉化為空間某一個平面內點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關系(充分、必要、充要條件)轉化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結讓學生總結本節(jié)課所學主要知識及解題技巧
本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當∠EOF=60°時,EF=OE=OF=1,當∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
等式性質與不等式性質是高中數(shù)學的主要內容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應,有著重要的實際意義.同時等式性質與不等式性質也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質與不等式性質以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質;2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉化為加法,將除法轉化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質猜測不等式的基本性質。
(4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內兩條相交直線A’C’,B’D’平行。
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC內∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內,∴BC⊥平面PAC又PC在平面PAC內,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時對函數(shù)圖象的形狀和位置的影響。通過引導學生對函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學生體會到由簡單到復雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數(shù)φ、ω、A的分類討論,讓學生深刻認識圖象變換與函數(shù)解析式變換的內在聯(lián)系。通過圖象變換和“五點”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點所在。提高學生的推理能力。讓學生感受數(shù)形結合及轉化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結合及轉化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質的探究,培養(yǎng)學生數(shù)形結合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;