Step 5: After learning the text, discuss with your peers about the following questions:1.John Snow believed Idea 2 was right. How did he finally prove it?2. Do you think John Snow would have solved this problem without the map?3. Cholera is a 19th century disease. What disease do you think is similar to cholera today?SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.keys:1. John Snow finally proved his idea because he found an outbreak that was clearly related to cholera, collected information and was able to tie cases outside the area to the polluted water.2. No. The map helped John Snow organize his ideas. He was able to identify those households that had had many deaths and check their water-drinking habits. He identified those houses that had had no deaths and surveyed their drinking habits. The evidence clearly pointed to the polluted water being the cause.3. SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.Step 6: Consolidate what you have learned by filling in the blanks:John Snow was a well-known _1___ in London in the _2__ century. He wanted to find the _3_____ of cholera in order to help people ___4_____ it. In 1854 when a cholera __5__ London, he began to gather information. He ___6__ on a map ___7___ all the dead people had lived and he found that many people who had ___8____ (drink) the dirty water from the __9____ died. So he decided that the polluted water ___10____ cholera. He suggested that the ___11__ of all water supplies should be _12______ and new methods of dealing with ____13___ water be found. Finally, “King Cholera” was __14_____.Keys: 1. doctor 2. 19th 3.cause 4.infected with 5.hit 6.marked 7.where 8.drunk 9.pump 10.carried 11.source 12.examined 13.polluted 14.defeatedHomework: Retell the text after class and preview its language points
This happens because the dish soap molecules have a strong negative charge, and the milk molecules have a strong positive charge. Like magnets, these molecules are attracted to each other, and so they appear to move around on the plate, taking the food coloring with them, making it look like the colors are quickly moving to escape from the soap.Listening text:? Judy: Oh, I'm so sorry that you were ill and couldn't come with us on our field trip. How are you feeling now? Better?? Bill: Much better, thanks. But how was it?? Judy: Wonderful! I especially liked an area of the museum called Light Games.it was really cool. They had a hall of mirrors where I could see myself reflected thousands of times!? Bill: A hall of mirrors can be a lot of fun. What else did they have?? Judy: Well, they had an experiment where we looked at a blue screen for a while, and then suddenly we could see tiny bright lights moving around on it. You'll never guess what those bright lights were!? Bill: Come on, tell me!? Judy: They were our own blood cells. For some reason, our eyes play tricks on us when we look at a blue screen, and we can see our own blood cells moving around like little lights! But there was another thing I liked better. I stood in front of a white light, and it cast different shadows of me in every color of the rainbow!? Bill: Oh, I wish I had been there. Tell me more!? Judy: Well, they had another area for sound. They had a giant piano keyboard that you could use your feet to play. But then, instead of playing the sounds of a piano, it played the voices of classical singers! Then they had a giant dish, and when you spoke into it, it reflected the sound back and made it louder. You could use it to speak in a whisper to someone 17 meters away.? Bill: It all sounds so cool. I wish I could have gone with you? Judy: I know, but we can go together this weekend. I'd love to go there again!? Bill: That sounds like a great idea!
The grammatical structure of this unit is predicative clause. Like object clause and subject clause, predicative clause is one of Nominal Clauses. The leading words of predicative clauses are that, what, how, what, where, as if, because, etc.The design of teaching activities aims to guide students to perceive the structural features of predicative clauses and think about their ideographic functions. Beyond that, students should be guided to use this grammar in the context apporpriately and flexibly.1. Enable the Ss to master the usage of the predicative clauses in this unit.2. Enable the Ss to use the predicative patterns flexibly.3. Train the Ss to apply some skills by doing the relevant exercises.1.Guide students to perceive the structural features of predicative clauses and think about their ideographic functions.2.Strengthen students' ability of using predicative clauses in context, but also cultivate their ability of text analysis and logical reasoning competence.Step1: Underline all the examples in the reading passage, where noun clauses are used as the predicative. Then state their meaning and functions.1) One theory was that bad air caused the disease.2) Another theory was that cholera was caused by an infection from germs in food or water.3) The truth was that the water from the Broad Street had been infected by waste.Sum up the rules of grammar:1. 以上黑體部分在句中作表語。2. 句1、2、3中的that在從句中不作成分,只起連接作用。 Step2: Review the basic components of predicative clauses1.Definition
Step 7: complete the discourse according to the grammar rules.Cholera used to be one of the most 1.__________ (fear) diseases in the world. In the early 19th century, _2_________ an outbreak of cholera hit Europe, millions of people died. But neither its cause, 3__________ its cure was understood. A British doctor, John Snow, wanted to solve the problem and he knew that cholera would not be controlled _4_________ its cause was found. In general, there were two contradictory theories 5 __________ explained how cholera spread. The first suggested that bad air caused the disease. The second was that cholera was caused by an _6_________(infect) from germs in food or water. John Snow thought that the second theory was correct but he needed proof. So when another outbreak of cholera hit London in 1854, he began to investigate. Later, with all the evidence he _7_________ (gather), John Snow was able to announce that the pump water carried cholera germs. Therefore, he had the handle of the pump _8_________ (remove) so that it couldn't be used. Through his intervention,the disease was stopped in its tracks. What is more, John Snow found that some companies sold water from the River Thames that __9__________________ (pollute) by raw waste. The people who drank this water were much more likely _10_________ (get) cholera than those who drank pure or boiled water. Through John Snow's efforts, the _11_________ (threaten) of cholera around the world saw a substantial increase. Keys: 1.feared 2.when 3. nor 4.unless 5.that/which 6.infection 7.had gathered 8.removed 9.was polluted 10.to get 11. threat
You have no excuse for not going.你沒有理由不去。He was punished for not having finished his homework.他因未完成作業(yè)而受到懲罰。2.動詞ing形式復合結(jié)構(gòu)由物主代詞或人稱代詞賓格、名詞所有格或普通格加動詞ing,即“sb./sb.'s+doing”構(gòu)成。動詞ing形式的復合結(jié)構(gòu)實際上是給動詞ing形式加了一個邏輯主語。動詞ing形式的復合結(jié)構(gòu)有四種形式:①形容詞性物主代詞+動詞ing②名詞所有格+動詞ing③代詞賓格+動詞ing④名詞+動詞ingHer coming to help encouraged all of us.她來幫忙鼓舞了我們所有人。The baby was made awake by the door suddenly shutting.這個嬰兒被突然的關門聲吵醒了。Can you imagine him/Jack cooking at home?你能想象他/杰克在家做飯的樣子嗎?無生命名詞無論是作主語還是作賓語都不能用第②種形式。Tom's winning first prize last year impressed me a lot.湯姆去年得了一等獎使我印象深刻。Do you mind my/me/Jack's/Jack leaving now?你介意我/杰克現(xiàn)在離開嗎?Excuse me for my not coming on time.很抱歉我沒能按時來。His father's being ill made him worried.他父親病了,他很擔心。We are looking forward to the singer's/the singer to give us a concert.我們盼望著這位歌手來給我們舉辦一場演唱會。
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學生總結(jié)本節(jié)課所學主要知識及解題技巧
本節(jié)課是在學習了三角函數(shù)圖象和性質(zhì)的前提下來學習三角函數(shù)模型的簡單應用,進一步突出函數(shù)來源于生活應用于生活的思想,讓學生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學“建模”思想,從而培養(yǎng)學生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學學科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學關系來建立數(shù)學模型; 3.數(shù)學運算:實際問題求解; 4.數(shù)學建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學建模思想,提高學生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.
課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結(jié)合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學習,讓學生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應用.
客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應關系,這種關系常??捎煤瘮?shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數(shù)關系式,初步體會應用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學和其他學科中的重要性. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學運算:結(jié)合函數(shù)圖象或其單調(diào)性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學建模:在具體問題情境中,運用數(shù)形結(jié)合思想,將自然語言用數(shù)學表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.
本章通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點個數(shù).數(shù)學學科素養(yǎng)1.數(shù)學抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
(4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉(zhuǎn)化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.
本節(jié)課在已學冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的增長方式存在很大差異.事實上,這種差異正是不同類型現(xiàn)實問題具有不同增長規(guī)律的反應.而本節(jié)課重在研究不同函數(shù)增長的差異.課程目標1.掌握常見增長函數(shù)的定義、圖象、性質(zhì),并體會其增長的快慢.2.理解直線上升、對數(shù)增長、指數(shù)爆炸的含義以及三種函數(shù)模型的性質(zhì)的比較,培養(yǎng)數(shù)學建模和數(shù)學運算等核心素養(yǎng).數(shù)學學科素養(yǎng)1.數(shù)學抽象:常見增長函數(shù)的定義、圖象、性質(zhì);2.邏輯推理:三種函數(shù)的增長速度比較;3.數(shù)學運算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù);5.數(shù)學建模:通過由抽象到具體,由具體到一般的數(shù)形結(jié)合思想總結(jié)函數(shù)性質(zhì).重點:比較函數(shù)值得大?。浑y點:幾種增長函數(shù)模型的應用.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學的主要內(nèi)容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應,有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學習指數(shù)函數(shù)的基礎上通過實例總結(jié)歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關的問題.課程目標1、通過實際問題了解對數(shù)函數(shù)的實際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學運算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結(jié)對數(shù)函數(shù)概念.重點:理解對數(shù)函數(shù)的概念和意義;難點:理解對數(shù)函數(shù)的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長時間呢?進一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
集合的基本運算是人教版普通高中課程標準實驗教科書,數(shù)學必修1第一章第三節(jié)的內(nèi)容. 在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內(nèi)容打下了基礎. 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學的主要內(nèi)容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點.課程目標1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關系與基本運算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質(zhì)的推導;3.數(shù)學運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補集的性質(zhì)列不等式組,此過程中重點關注端點是否含“=”及?問題;
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應用.數(shù)學學科素養(yǎng)1.數(shù)學抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學運算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學建模:讓學生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點:能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認識清楚它在一個周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學運算:五點作圖; 5.數(shù)學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數(shù)形結(jié)合思想方法的應用.
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關系,尤其學生學完兩個集合之間的關系后,一定讓學生明確元素與集合、集合與集合之間的區(qū)別。課程目標1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關系,體會直觀圖示對理解抽象概念的作用。數(shù)學學科素養(yǎng)1.數(shù)學抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學運算:由集合間的關系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關系列不等式組, 此過程中重點關注端點是否含“=”及 問題;5.數(shù)學建模:用集合思想對實際生活中的對象進行判斷與歸類。
它位于三角函數(shù)與數(shù)學變換的結(jié)合點上,能較好反應三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎性上。作用體現(xiàn)在它的工具性上。前面學生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應用. 數(shù)學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學運算:三角函數(shù)式的求值.