請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導(dǎo)學(xué)生從上述實例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個條件?三、 鞏固練習(xí):1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習(xí)題4.2
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
說教材>是人教版小學(xué)數(shù)學(xué)五年級上冊第五單元P64的內(nèi)容。在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)認識了等式與方程,這便為本節(jié)課的學(xué)習(xí)(構(gòu)建等量關(guān)系的數(shù)學(xué)模型)打下一定的基礎(chǔ),同時也為以后解簡單方程埋下伏筆,因此本節(jié)課內(nèi)容也是本章中的一個重點?;诒竟?jié)內(nèi)容的特點,我將本節(jié)課的教學(xué)目標確定為:1.知識與技能:理解等式的性質(zhì)并用語言表述,能利用等式的性質(zhì)解決簡單問題;2.過程與方法:在實驗操作、討論、歸納等活動中,經(jīng)歷探究等式基本性質(zhì)的過程;3.情感態(tài)度與價值觀:使學(xué)生積極參與數(shù)學(xué)活動,體驗探索等式基本性質(zhì)的挑戰(zhàn)性與得出數(shù)學(xué)結(jié)論的確定性。教學(xué)重難點:了解等式的基本性質(zhì),并能簡單運用。說學(xué)情:小學(xué)五年級的學(xué)生已具備一定的思考能力,又樂于動手操作、合作探究。因此教學(xué)中我引導(dǎo)學(xué)生認真觀察-獨立思考-自主探究-合作交流,遵循由淺入深,由具體到抽象的規(guī)律,為學(xué)生創(chuàng)設(shè)一個和諧的學(xué)習(xí)環(huán)境,讓孩子們在探索中交流、感受、理解和概括出等式的基本性質(zhì)。
人民幣的簡單計算是在對人民幣的認識后,是人民幣的再進一步的認識。本節(jié)課的主要知識點主要有三個:一人民幣單位間的換算、二進行簡單的計算,三是知道商品價格的表示形式。同時通過這節(jié)課的學(xué)習(xí),逐漸培養(yǎng)交往和社會實踐能力,體會人民幣在社會生活商品交換中的作用。為了達成以上的一些目標我是這樣設(shè)計這節(jié)課。一、從學(xué)生經(jīng)驗入手直接引入商品價格,在學(xué)生回憶商品價格的表示方法中,喚醒學(xué)生的思緒,使學(xué)生覺得在所學(xué)的知識與實際生活的聯(lián)系。讓學(xué)生體驗到數(shù)學(xué)與日常生活的密切聯(lián)系。二、在操作中完成進率的換算。進率的換算在教學(xué)是一個重點也是難點,為此我在教學(xué)上通過不同的的付錢方法,深刻體會,這樣的教學(xué)讓說不清的關(guān)系,在操作講解中得以內(nèi)化。學(xué)生學(xué)了也不易忘記。
教學(xué)重難點:學(xué)會人民幣單位間的換算和簡單的加減法計算以及學(xué)會看物品價格的表示形式第三部分 設(shè)計意圖1. 通過購物情景的創(chuàng)設(shè),使課堂富有真實的生活氣息。2. 為學(xué)生搭建知識的攀升階梯,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的發(fā)展形成過程。3. 將所學(xué)知識應(yīng)用現(xiàn)實生活中,解決實際問題。第四部分 教學(xué)過程一、創(chuàng)設(shè)情境,激趣導(dǎo)入。1.孩子們你們喜歡交朋友嗎?(喜歡)在班級里誰是你的好朋友呀?(學(xué)生回答)你們喜歡我嗎?我也想和你們做朋友。今天我還給同學(xué)們帶來了一個新朋友?你們看它是誰?電腦出示米老鼠你們想和它做朋友嗎?想和它做朋友上課就得好好表現(xiàn),他們才愿意做你們的朋友.誰說一下,上課怎樣做才是好好表現(xiàn)呢?(要專心聽見,勇敢發(fā)言,)老師看看勇敢的你在哪里?
三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?
(一)觀圖激趣、設(shè)疑導(dǎo)入 師:上一節(jié)我們已經(jīng)認識了比例,知道兩個比怎樣才能組成比例,下面請同學(xué)們判斷一下下面各組的比能否組成比例。(1)0.4∶和1.2∶2 (2)和生1:根據(jù)比例的意義,第(1)題,這兩個比的比值相等,都是0.6,所以(1)題的兩個比能組成比例。生2:我來回答第(2)題,我也利用比例的意義,求出=5,=6,這兩個比的比值不相等,所以第(2)題的兩個比不能組成比例。師:這兩名同學(xué)回答的真好,有理有據(jù),讓我們?yōu)樗麄兊谋憩F(xiàn)鼓掌!師:今天這節(jié)課,我們將共同來學(xué)習(xí)用另一種方法來判斷兩個比能否組成比例,同學(xué)們想知道是什么方法嗎?生:想知道。師:那就是比例的基本性質(zhì)(板書課題:比例的基本性質(zhì))。【設(shè)計意圖】復(fù)習(xí)學(xué)生已有的知識,喚醒學(xué)生已有學(xué)習(xí)經(jīng)驗,教師的提問吸引了學(xué)生的注意力,也引發(fā)學(xué)生的好奇心,為學(xué)習(xí)新知識開了一個好頭。
解析:平行線中的拐點問題,通常需過拐點作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補.平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應(yīng)的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設(shè)計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學(xué)生體會到三視圖中位置及各部分之間大小的對應(yīng)關(guān)系.通過具體活動,積累學(xué)生的觀察、想象物體投影的經(jīng)驗,發(fā)展學(xué)生的動手實踐能力、數(shù)學(xué)思考能力和空間觀念.
一.教材分析(一)教材內(nèi)容地位作用與學(xué)情《分數(shù)的簡單計算》是人教版小學(xué)數(shù)學(xué)三年級上冊P96~97第八單元中的分數(shù)的簡單計算第一課時的內(nèi)容。主要是簡單同分母分數(shù)的加減法的計算,分數(shù)的簡單計算是學(xué)生數(shù)與代數(shù)運算的一次擴展,是在學(xué)生之前學(xué)習(xí)認知了簡單分數(shù)含義及其大小比較等知識經(jīng)驗的基礎(chǔ)上開展教學(xué)的。也是學(xué)習(xí)異分母加減法等知識的基礎(chǔ)。(二)教學(xué)目標基于以上教材理解分析和新課程標準“四基”、“四能”要求,擬將本課教學(xué)目標定位確立如下:知識與技能目標: 理解和掌握同分母分數(shù)加減法的算理和計算方法,能正確計算簡單同分母分數(shù)的加減法,解決簡單實際問題;過程與方法目標:讓學(xué)生經(jīng)歷探究同分母加減法的計算方法的過程。培養(yǎng)學(xué)生的動手操作能力、邏輯思維能力、口頭表達能力和計算能力。情感態(tài)度與價值觀目標:讓學(xué)生感受到數(shù)學(xué)來與生活的密切聯(lián)系,培養(yǎng)增強數(shù)學(xué)興趣。
四,說教學(xué)過程(一)基本功訓(xùn)練:通過2分鐘口算練習(xí)以及聽,說,動的訓(xùn)練,提高學(xué)生的口算能力及運算速度,培養(yǎng)學(xué)生的聽,說,動的學(xué)習(xí)習(xí)慣.緩解學(xué)生的緊張情緒.(二)情景激趣,導(dǎo)入新課.通過談話,同學(xué)們喜歡吃水果嗎吃水果能吃出數(shù)學(xué)問題.這是出示例1的情境圖,讓學(xué)生說一說他們吃出了什么數(shù)學(xué)問題.這樣設(shè)計的意圖是通過學(xué)生自己觀察發(fā)現(xiàn)數(shù)學(xué)信息,提出數(shù)學(xué)問題,培養(yǎng)學(xué)生解決問題的意識和能力,培養(yǎng)學(xué)生抓住有價值的數(shù)學(xué)信息的能力.(三)探究同分母分數(shù)加法.看到黑板上的和你想到了什么(比大,分母相同,根據(jù)這個分數(shù)你們能提個問題嗎)這是注重培養(yǎng)學(xué)生多思考,多表達,在語言表達中深化對前面學(xué)習(xí)過知識的理解.發(fā)展學(xué)生的語言表達能力.
3、教材結(jié)構(gòu)分析教材內(nèi)容可以看出,本節(jié)課包含四個知識的內(nèi)容。即調(diào)查入學(xué)時的體重情況填寫統(tǒng)計表;收集現(xiàn)在(二年級)的體重情況填寫統(tǒng)計表;把入學(xué)以及現(xiàn)在的體重情況統(tǒng)一填寫到同一個統(tǒng)計表中;整理、分析表內(nèi)信息回答簡單的問題。但從本地學(xué)生情況實際出發(fā),以及條件的限制,所以本人對教材內(nèi)容進行了略微的調(diào)整,將調(diào)查入學(xué)時的體重情況填寫統(tǒng)計表改為統(tǒng)計本地區(qū)天氣情況,也與現(xiàn)實生活緊密地聯(lián)系在一起。同時,按照教材的邏輯性將知識整合在新課程改革的目標中。4、教學(xué)目標(1)知識目標:能運用信息的手段、新的學(xué)習(xí)方法收集整理數(shù)據(jù)完成簡單的復(fù)合式統(tǒng)計圖。(2)情感目標:能根據(jù)統(tǒng)計圖表中的數(shù)據(jù)提出并解答簡單的問題,感受生活中處處有數(shù)學(xué),結(jié)合實例有機地進行家鄉(xiāng)情的教育。
學(xué)生在一年級上冊開始學(xué)習(xí)簡單的分類整理,初步認識了象形統(tǒng)計圖和簡單的統(tǒng)計表。本課繼續(xù)學(xué)習(xí)統(tǒng)計,以整理隨機出現(xiàn)的簡單數(shù)據(jù)為主要內(nèi)容,并把經(jīng)過整理的數(shù)據(jù)填進簡單的統(tǒng)計表。在統(tǒng)計過程中,讓學(xué)生學(xué)到一些比較容易的統(tǒng)計方法,滲透統(tǒng)計的思想和方法,激發(fā)培養(yǎng)學(xué)生的學(xué)習(xí)熱情和信心。三、教學(xué)目標:1、使學(xué)生體驗數(shù)據(jù)的收集、整理、描述和分析的過程,了解統(tǒng)計的意義,會用簡單的方法收集和表現(xiàn)數(shù)據(jù)。2、認識條形統(tǒng)計圖,明確用1格表示5個單位的表現(xiàn)形式,能根據(jù)統(tǒng)計圖提出問題,并初步進行簡單的預(yù)測。3、在學(xué)習(xí)過程中培養(yǎng)學(xué)生的實踐能力與合作意識。四、重點難點教學(xué)重點:使學(xué)生認識條形統(tǒng)計圖,明確可以用一格表示5個單位。教學(xué)難點:引導(dǎo)學(xué)生通過合作討論找到切實可行的解決問題的方法。
探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設(shè)計1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應(yīng)關(guān)系.
如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設(shè)計反比例函數(shù)的性質(zhì)性質(zhì)當k>0時,在每一象限內(nèi),y的值隨x的值的增大而減小當k<0時,在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進行語言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中,增強他們對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.
方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過一點作一條直線或線段的平行線是我們常作的輔助線.
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
【教學(xué)目標】知識目標:⑴ 理解函數(shù)的單調(diào)性與奇偶性的概念;⑵ 會借助于函數(shù)圖像討論函數(shù)的單調(diào)性;⑶理解具有奇偶性的函數(shù)的圖像特征,會判斷簡單函數(shù)的奇偶性.能力目標:⑴ 通過利用函數(shù)圖像研究函數(shù)性質(zhì),培養(yǎng)學(xué)生的觀察能力;⑵ 通過函數(shù)奇偶性的判斷,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力.【教學(xué)重點】⑴ 函數(shù)單調(diào)性與奇偶性的概念及其圖像特征;⑵ 簡單函數(shù)奇偶性的判定.【教學(xué)難點】函數(shù)奇偶性的判斷.(*函數(shù)單調(diào)性的判斷)【教學(xué)設(shè)計】(1)用學(xué)生熟悉的主題活動將所學(xué)的知識有機的整合在一起;(2)引導(dǎo)學(xué)生去感知數(shù)學(xué)的數(shù)形結(jié)合思想.通過圖形認識特征,由此定義性質(zhì),再利用圖形(或定義)進行性質(zhì)的判斷;(3)在問題的思考、交流、解決中培養(yǎng)和發(fā)展學(xué)生的思維能力.【教學(xué)備品】教學(xué)課件.【課時安排】3課時.(90分鐘)【教學(xué)過程】
創(chuàng)設(shè)情景 興趣導(dǎo)入問題 觀察鐘表,如果當前的時間是2點,那么時針走過12個小時后,顯示的時間是多少呢?再經(jīng)過12個小時后,顯示的時間是多少呢?.解決每間隔12小時,當前時間2點重復(fù)出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動腦思考 探索新知概念 對于函數(shù),如果存在一個不為零的常數(shù),當取定義域內(nèi)的每一個值時,都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個函數(shù)的一個周期. 由于正弦函數(shù)的定義域是實數(shù)集R,對,恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
活動準備 1、教具準備:三種排列規(guī)律的范例條各一(○□○□○□;○□□○□□○□□;○□△○□△○□△);“奇妙的書”課件(封面是彩虹,從第一頁到第七頁依次是一顆紅色的草莓、兩只橙色的橘子、三根黃色的香蕉、四只綠色的西瓜、五只青色的蘋果、六顆藍色的梅子、七串紫色的葡萄:圖片幾組(從兒童到少年到成人再到老年人;從樹芽到小樹再到大樹;從雞蛋到小雞再到母雞,等等)。2、學(xué)具準備:操作紙、記號筆、三角形、圓形、正方形各若干。 活動過程一、開始部分 談話導(dǎo)人:小朋友有沒有發(fā)現(xiàn),今天我們座位排列的順序有什么特別的地方?(一個男孩、一個女孩)有一組圖形寶寶排列的順序和我們很相似,我們一起來看看它們是誰。