本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人教A版)第三章《函數的概念與性質》,本節(jié)課是第2課時,本節(jié)課主要學習函數的三種表示方法及其簡單應用,進一步加深對函數概念的理解。課本從引進函數概念開始就比較注重函數的不同表示方法:解析法,圖象法,列表法.函數的不同表示方法能豐富對函數的認識,幫助理解抽象的函數概念.特別是在信息技術環(huán)境下,可以使函數在形與數兩方面的結合得到更充分的表現,使學生通過函數的學習更好地體會數形結合這種重要的數學思想方法.因此,在研究函數時,要充分發(fā)揮圖象的直觀作用.課程目標 學科素養(yǎng)A.在實際情景中,會根據不同的需要選擇恰當的方法(解析式法、圖象法、列表法)表示函數;B.了解簡單的分段函數,并能簡單地應用;1.數學抽象:函數解析法及能由條件求函數的解析式;2.邏輯推理:求函數的解析式;
課本從引進函數概念開始就比較注重函數的不同表示方法:解析法,圖象法,列表法.函數的不同表示方法能豐富對函數的認識,幫助理解抽象的函數概念.特別是在信息技術環(huán)境下,可以使函數在形與數兩方面的結合得到更充分的表現,使學生通過函數的學習更好地體會數形結合這種重要的數學思想方法.因此,在研究函數時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數刻畫以求思考和表述的精確性.課本將映射作為函數的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學習,讓學生將更多的精力集中理解函數的概念,同時,也體現了從特殊到一般的思維過程.課程目標1、明確函數的三種表示方法;2、在實際情境中,會根據不同的需要選擇恰當的方法表示函數;3、通過具體實例,了解簡單的分段函數,并能簡單應用.
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.5.1節(jié)《函數零點與方程的解》,由于學生已經學過一元二次方程與二次函數的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、了解函數(結合二次函數)零點的概念;2、理 解函數零點與方程的根以及函數圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學數形結合及函數思想; a.數學抽象:函數零點的概念;b.邏輯推理:零點判定定理;c.數學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數學建模:運用函數的觀點方程的根;
客觀世界中的各種各樣的運動變化現象均可表現為變量間的對應關系,這種關系常常可用函數模型來描述,并且通過研究函數模型就可以把我相應的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數關系式,初步體會應用一次函數、二次函數、冪函數、分段函數模型解決實際問題; 2、感受運用函數概念建立模型的過程和方法,體會一次函數、二次函數、冪函數、分段函數模型在數學和其他學科中的重要性. 數學學科素養(yǎng)1.數學抽象:總結函數模型; 2.邏輯推理:找出簡單實際問題中的函數關系式,根據題干信息寫出分段函數; 3.數學運算:結合函數圖象或其單調性來求最值. ; 4.數據分析:二次函數通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數學建模:在具體問題情境中,運用數形結合思想,將自然語言用數學表達式表示出來。 重點:運用一次函數、二次函數、冪函數、分段函數模型的處理實際問題;難點:運用函數思想理解和處理現實生活和社會中的簡單問題.
本節(jié)課選自《普通高中課程標準實驗教科書數學必修1本(A版)》的第五章的4.5.3函數模型的應用。函數模型及其應用是中學重要內容之一,又是數學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數模型的應用實質是揭示了客觀世界中量的相互依存有互有制約的關系,因而函數模型的應用舉例有著不可替代的重要位置,又有重要的現實意義。本節(jié)課要求學生利用給定的函數模型或建立函數模型解決實際問題,并對給定的函數模型進行簡單的分析評價,發(fā)展學生數學建模、數學直觀、數學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數模型解決實際問題.2.了解擬合函數模型并解決實際問題.3.通過本節(jié)內容的學習,使學生認識函數模型的作用,提高學生數學建模,數據分析的能力. a.數學抽象:由實際問題建立函數模型;b.邏輯推理:選擇合適的函數模型;c.數學運算:運用函數模型解決實際問題;
本章通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。1.了解函數的零點、方程的根與圖象交點三者之間的聯系.2.會借助零點存在性定理判斷函數的零點所在的大致區(qū)間.3.能借助函數單調性及圖象判斷零點個數.數學學科素養(yǎng)1.數學抽象:函數零點的概念;2.邏輯推理:借助圖像判斷零點個數;3.數學運算:求函數零點或零點所在區(qū)間;4.數學建模:通過由抽象到具體,由具體到一般的思想總結函數零點概念.重點:零點的概念,及零點與方程根的聯系;難點:零點的概念的形成.
本節(jié)是新人教A版高中數學必修1第1章第1節(jié)第3部分的內容。在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎。本節(jié)內容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當的問題情境,使學生感受、認識并掌握集合的三種基本運算。本節(jié)內容是函數、方程、不等式的基礎,在教材中起著承上啟下的作用。本節(jié)內容是高中數學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關系及運算。 1.數學抽象:集合交集、并集、補集的含義;2.數學運算:集合的運算;3.直觀想象:用 圖、數軸表示集合的關系及運算。
集合的基本運算是人教版普通高中課程標準實驗教科書,數學必修1第一章第三節(jié)的內容. 在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎. 本節(jié)內容是函數、方程、不等式的基礎,在教材中起著承上啟下的作用. 本節(jié)內容是高中數學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點.課程目標1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關系與基本運算.數學學科素養(yǎng)1.數學抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質的推導;3.數學運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質求參數(參數的范圍);4.數據分析:通過并集、交集及補集的性質列不等式組,此過程中重點關注端點是否含“=”及?問題;
本節(jié)內容來自人教版高中數學必修一第一章第一節(jié)集合第二課時的內容。集合論是現代數學的一個重要基礎,是一個具有獨特地位的數學分支。高中數學課程是將集合作為一種語言來學習,在這里它是作為刻畫函數概念的基礎知識和必備工具。本小節(jié)內容是在學習了集合的含義、集合的表示方法以及元素與集合的屬于關系的基礎上,進一步學習集合與集合之間的關系,同時也是下一節(jié)學習集合間的基本運算的基礎,因此本小節(jié)起著承上啟下的關鍵作用.通過本節(jié)內容的學習,可以進一步幫助學生利用集合語言進行交流的能力,幫助學生養(yǎng)成自主學習、合作交流、歸納總結的學習習慣,培養(yǎng)學生從具體到抽象、從一般到特殊的數學思維能力,通過Venn圖理解抽象概念,培養(yǎng)學生數形結合思想。
四、小結1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數的相關性質求值.其中三角函數最值問題是對三角函數的概念、圖像和性質,以及誘導公式、同角三角函數基本關系、和(差)角公式的綜合應用,也是函數思想的具體體現. 如何科學的把實際問題轉化成數學問題,如何選擇自變量建立數學關系式;求解三角函數在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關系式 化成 的形式,可以很好地培養(yǎng)學生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數學關系式,可以很好地培養(yǎng)學生分析問題、解決問題的能力和應用意識,進一步培養(yǎng)學生的建模意識.五、作業(yè)1. 課時練 2. 預習下節(jié)課內容學生根據課堂學習,自主總結知識要點,及運用的思想方法。注意總結自己在學習中的易錯點;
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關系,尤其學生學完兩個集合之間的關系后,一定讓學生明確元素與集合、集合與集合之間的區(qū)別。課程目標1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關系,體會直觀圖示對理解抽象概念的作用。數學學科素養(yǎng)1.數學抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯系與區(qū)別;3.數學運算:由集合間的關系求參數的范圍,常見包含一元二次方程及其不等式和不等式組;4.數據分析:通過集合關系列不等式組, 此過程中重點關注端點是否含“=”及 問題;5.數學建模:用集合思想對實際生活中的對象進行判斷與歸類。
它位于三角函數與數學變換的結合點上,能較好反應三角函數及變換之間的內在聯系和相互轉換,本節(jié)課內容的地位體現在它的基礎性上。作用體現在它的工具性上。前面學生已經掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經具備了一定的推理、運算能力,但在數學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數式的化簡、求值以及證明,進而進行簡單的應用. 數學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數據分析:三角函數式的化簡; 3.數學運算:三角函數式的求值.
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
本節(jié)內容是學生學習了任意角和弧度制,任意角的三角函數后,安排的一節(jié)繼續(xù)深入學習內容,是求三角函數值、化簡三角函數式、證明三角恒等式的基本工具,是整個三角函數知識的基礎,在教材中起承上啟下的作用。同時,它體現的數學思想與方法在整個中學數學學習中起重要作用。課程目標1.理解并掌握同角三角函數基本關系式的推導及應用.2.會利用同角三角函數的基本關系式進行化簡、求值與恒等式證明.數學學科素養(yǎng)1.數學抽象:理解同角三角函數基本關系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關系;3.數學運算:利用同角三角函數的基本關系式進行化簡、求值與恒等式證明重點:理解并掌握同角三角函數基本關系式的推導及應用; 難點:會利用同角三角函數的基本關系式進行化簡、求值與恒等式證明.
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設它們確定的平面為β,則B∈β, 由于經過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內不經過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關系?并畫圖說明.解: 直線a與直線c的位置關系可以是平行、相交、異面.如圖(1)(2)(3).總結:判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內.
本節(jié)課是三角函數的繼續(xù),三角函數包含正弦函數、余弦函數、正切函數.而本課內容是正切函數的性質與圖像.首先根據單位圓中正切函數的定義探究其圖像,然后通過圖像研究正切函數的性質. 課程目標1、掌握利用單位圓中正切函數定義得到圖象的方法;2、能夠利用正切函數圖象準確歸納其性質并能簡單地應用.數學學科素養(yǎng)1.數學抽象:借助單位圓理解正切函數的圖像; 2.邏輯推理: 求正切函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數的圖像; 5.數學建模:讓學生借助數形結合的思想,通過圖像探究正切函數的性質. 重點:能夠利用正切函數圖象準確歸納其性質并能簡單地應用; 難點:掌握利用單位圓中正切函數定義得到其圖象.
由于三角函數是刻畫周期變化現象的數學模型,這也是三角函數不同于其他類型函數的最重要的地方,而且對于周期函數,我們只要認識清楚它在一個周期的區(qū)間上的性質,那么它的性質也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數的定義、三角函數值之間的內在聯系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數、余弦函數的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯系. 數學學科素養(yǎng)1.數學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯系; 3.直觀想象:正弦函數余弦函數的圖像; 4.數學運算:五點作圖; 5.數學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數形結合思想方法的應用.
本節(jié)課是正弦函數、余弦函數圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數、余弦函數的性質. 課程目標1.了解周期函數與最小正周期的意義;2.了解三角函數的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數的周期;4.借助圖象直觀理解正、余弦函數在[0,2π]上的性質(單調性、最值、圖象與x軸的交點等);5.能利用性質解決一些簡單問題. 數學學科素養(yǎng)1.數學抽象:理解周期函數、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小、最值、值域及判斷奇偶性.4.數學建模:讓學生借助數形結合的思想,通過圖像探究正、余弦函數的性質.重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數、余弦函數的性質; 難點:應用正、余弦函數的性質來求含有cosx,sinx的函數的單調性、最值、值域及對稱性.
1.探究:根據基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內兩條相交直線A’C’,B’D’平行。
新知探究:向量的減法運算定義問題四:你能根據實數的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )