一、說教材:稍復雜的方程的教學任務例1教學解方程ax±b=c及其應用(列方程解形如ax±b=c的問題)(1)把解方程和用方程解決問題有機結(jié)合,在解決問題的過程中解較復雜的方程。(2)結(jié)合現(xiàn)實素材(足球上兩種顏色皮的塊數(shù))引出,這種問題用算術(shù)方法解決思考起來比較麻煩。(3解方程的過程其實是由解若干基本方程構(gòu)成的(y-20=4,2x=24),需要強調(diào)把2x看成一個整體。(4)可以列出不同的方程,如2x-4=20,關(guān)鍵是使學生理解數(shù)量關(guān)系。二、說學生:學生在前面已經(jīng)學習了簡單的方程數(shù)量關(guān)系,及簡單方程式的解法,而且我在前面的教學中已經(jīng)笨鳥先飛,讓學生接觸了形如:ax±b=c的方程式。三、說教法:根據(jù)學生的實際情況,我準備在教學過程中,重點講解稍復雜方程式的數(shù)量關(guān)系式的分析研究,讓學生根據(jù)應用題的題意列出正確的數(shù)量關(guān)系式。
一、創(chuàng)設(shè)情境,引入新課。課開始,首先通過談話問學生“你們喜歡玩游戲嗎?”隨后呈現(xiàn)例題的情境圖,讓學生在觀察中清楚的知道袋中有4個紅球和2個紅球。然后教師揭示摸球游戲的規(guī)則:每次任意摸一個球,摸好后放回袋中,一共摸30次。摸到紅球的次數(shù)多算小明贏;摸到黃球的次數(shù)多算小玲贏。接著讓學生猜一猜誰贏得可能性大一些。預設(shè)學生都會猜是小明贏得可能性大一些。然后組織學生在小組里進行摸球?qū)嶒?,并把摸的結(jié)果記錄在書本例題的第一個記錄表中,驗證剛才的猜想。在學生操作完之后,讓學生明確小明贏得可能性大一些。接著引導學生產(chǎn)生質(zhì)疑:“這樣的游戲公平嗎?為什么?”引導學生小結(jié):口袋中紅球的個數(shù)比較多,所以每次任意摸一個球,摸到紅球的可能性要大,最后小明贏得可能性也就相應地要大一些,這樣摸球的游戲規(guī)則是不公平的。在此基礎(chǔ)上揭示課題并板書:游戲規(guī)則的公平性。
2、巧妙練習,強化意義《數(shù)學課程標準》指出:“引導學生把所學的數(shù)學知識應用到現(xiàn)實中去,以體會數(shù)學在現(xiàn)實生活中的應用價值。”為此,我設(shè)計如下練習:為1/2這一分數(shù)配圖(課件),教師提出要求:大家看這里有一個分數(shù),你能試著給它配幾幅圖嗎?配出一幅的是達標,兩幅以上的是良好,三幅以上的是優(yōu)秀。借助激勵性的語言,學生定會躍躍欲試,在優(yōu)美的樂曲中大顯身手??赡軙霈F(xiàn)這樣的作品(課件)。那么同是分數(shù)1/2,為什么會出現(xiàn)這么多不同的作品呢?那是因為學生假設(shè)的整體不同,也就是單位“1”不同,因此所配出來的圖是不一樣的。(借助為分數(shù)配圖這一環(huán)節(jié),即強化了學生對分數(shù)意義的理解,又增強了學習的趣味性,符合小學生的心理特征,同時訓練學生的思維,培養(yǎng)了學生思維的廣闊性,靈活性。
活動三:認識正方體的特征,總結(jié)長方體、正方體的關(guān)系(1)學生用類比法學習正方體的特征,并揭示出長方體和正方體的內(nèi)在聯(lián)系,得出:正方體是特殊的長方體。(2)說說生活中哪些物體是長方體、正方體? 開放的學習方式,以學生的自主學習為中心,讓學生通過自身的發(fā)展嘗試總結(jié),驗證,實現(xiàn)知識的“再創(chuàng)造”。比較是認識事物的主要方法之一,特別在幾何體教學中,運用比較方法,加強形體間的聯(lián)系和區(qū)別,提高識別能力。同時滲透事物普遍聯(lián)系和發(fā)展變化的辯證唯物主義觀。聯(lián)系生活,體現(xiàn)數(shù)學來源于生活,又應用于生活的特點?;顒铀模簩W以致用智慧屋,包含判斷題、計算題等多種題型的練習,培養(yǎng)學生展開多向思維,是學生能夠從不同角度解決問題的基礎(chǔ)。這樣的練習題,側(cè)重于知識點的落實,鞏固新知。
4、認識長方體的立體圖。師:(出示課件長方體)你最多能看到這個長方體的幾個面?你看到了哪三個面?哪三個面看不到?(上面、前面、右面)師:我們把所看到的這個長方體根據(jù)透視原理畫下來就是這樣的。(媒體演示) 這就是長方體的立體圖形。師:大家會認了嗎?試一試。師小結(jié):以后,我們要判斷一個物體是不是長方體,要根據(jù)長方體的特征去分析。5、畫長方體師:同學們都學得非常認真知道了長方體的特征,那么大家會畫長方體嗎?畫長方體步驟:1、畫一個平行四邊形。2、畫出長方體的高。3、連線。6、 教學長方體的長、寬、高。 (1)、師:同學們剛畫出了長方體,那么長方體的長、寬、高有什么特點?師課件展示后,學生匯報。(2)、大家想不想親手制作一個長方體的框架呢?把你思考的結(jié)果和大家分享分享。生匯報。
2、從正面初步感受成正比例量的特征發(fā)給學生學習卡,呈現(xiàn)給學生兩組成正比例的量,目的是讓學生從正面發(fā)現(xiàn)正比例的特征,通過觀察、自主探索與合作交流等方式初步建構(gòu)正比例的意義并做抽象歸納。3、在練習中繼續(xù)感受成正比例量的特征練習分兩個層次,首先呈現(xiàn)給學生簡單的成正比例和不成正比例的三組量進行比較,然后呈現(xiàn)一些易錯的數(shù)量關(guān)系進行判斷,目的是讓學生在比較中,逐步剝離無關(guān)因素,突出正比例的本質(zhì)特征,并形成正確的正比例的判定思路。(三)說學法在本節(jié)課中,我著重引導學生,在獨立思考的基礎(chǔ)上,學會小組合作交流。具體表現(xiàn)在學會思考,學會觀察,學會表達,學會思考。使學生有足夠的時間和空間經(jīng)歷觀察、猜測、推理等活動過程,并對學生進行激勵性的評價,讓學生樂于說,善于說。
這節(jié)課的教學內(nèi)容是在學生學習掌握了圓和圓柱的相關(guān)知識的基礎(chǔ)上而安排的。認識圓錐,首先要了解它的特征。因此教材把它安排在這一部分內(nèi)容的第一節(jié),為下面的學習做好鋪墊。由于圓柱與圓錐的知識是密切相關(guān)的,因而教材把圓錐的認識安排在圓柱的認識之后,為學習圓錐的特征以及體積起到了一個橋梁的作用。二、說學情我所教學班級的學生是山區(qū)的孩子,經(jīng)過前面的學習他們的主觀性和能動性已經(jīng)有較大的提高,能夠有意識地主動探索未知世界。同時,他們的思維能力、分析問題的意識和能力也有明顯的提高,也有一定的動手操作能力。但抽象邏輯思維在很大程度上仍然靠感性經(jīng)驗支持,加上他們生活在山區(qū),對新生事物的見識面相對較窄,所以在教學時適宜恰當?shù)剡\用遠程教育資源,既能創(chuàng)設(shè)教學情境,又能將抽象的知識直觀化,更加直觀地體驗感知圓錐的特征。
首先,學生帶著如下三個問題自學課文,(電腦出示):(1)用什么方法可以得到計算圓錐體積的公式?(2)圓柱和圓錐等底等高是什么意思?(3)得出了什么結(jié)論?圓錐體積的計算公式是什么?其次,學生操作實驗,先讓學生比較圓柱和圓錐是等底等高。再讓學生做在圓錐中裝滿沙土往等底等高的圓柱中倒和在圓柱中裝滿沙土往等底等高的圓錐中倒的實驗,得出倒三次正好倒?jié)M。使學生理解等底等高的圓柱和圓錐,圓錐的體積是圓柱體積的,圓柱的體積是圓錐的3倍。第三、小組討論,全班交流,歸納,推導出圓錐體積的計算公式:V= Sh。第四、讓學生做在小圓錐里裝滿沙土往大圓柱中倒的實驗,得出倒三次不能倒?jié)M。再次強調(diào),只有等底等高的圓柱和圓錐才存在著一定的倍數(shù)關(guān)系。第五、師生小結(jié):圓錐的體積等于和它等底等高的圓柱體積的三分之一。
(三)實踐活動(運用)接著,我設(shè)計了實踐活動,讓學生走出教室,在校園找到不同型號的自行車有四輛我把學生分成四組,并且分工合作,每組5個人,有3 個人負責采集數(shù)據(jù),有兩個人負責計算出結(jié)果。教師還要在旁邊指導測量的方法,讓學生學會收集數(shù)據(jù)。培養(yǎng)學生學會用數(shù)學的眼光觀察現(xiàn)實生活,從中發(fā)現(xiàn)問題,提出問題,解決問題,體會數(shù)學的廣泛應用與實際價值,獲得良好的情感體驗。數(shù)學模型方法的教學,還要培養(yǎng)學生運用模型解決現(xiàn)實問題的能力。因此,在學生理解模型之后,老師提供各種各樣的現(xiàn)實問題,引導學生運用所得的數(shù)學模型去解決。在這個過程中,教師的指導非常重要,教師要指導學生把現(xiàn)實問題的元素與數(shù)學模型中的元素建立丐聯(lián)系,還要指導學生如何運用已經(jīng)建構(gòu)的數(shù)學模型來分析和處理問題。學生經(jīng)歷了這樣的學習過程,他們才會感受到數(shù)學模型的力量,才會感受到數(shù)學學習的樂趣。
(一)說教材《百分數(shù)的一般應用題》是在學生學過用分數(shù)解決問題和百分數(shù)的意義、百分數(shù)和分數(shù)、小數(shù)的互化的基礎(chǔ)上進行教學的。主要內(nèi)容是求常見的百分率,也就是求一個數(shù)是另一個數(shù)的百分之幾的實際問題,這種問題與求一個數(shù)是另一個數(shù)的幾分之幾的問題相同。所以求常見的百分率的思路和方法與分數(shù)解決問題大致相同。通過這部分教學,既加深了學生對百分數(shù)的認識,又加強了知識間的聯(lián)系。這部分教材在安排上有以下一些特點:1、從學生已有的知識和生活經(jīng)驗出發(fā),幫助學生理解數(shù)學。2、設(shè)置數(shù)學活動生活情境,培養(yǎng)學生的解決問題意識和探究精神。(二)說學生對學生來說,利用已有的知識和生活經(jīng)驗,依據(jù)數(shù)量關(guān)系列式解答并不困難,但要求學生找準誰和誰比,很重要。二、說教學目標與重難點根據(jù)以上分析,我確定了本節(jié)課的教學目標如下:1、使學生加深對百分數(shù)的認識,理解生活中的百分率的含義,掌握求百分率的方法。2、依據(jù)分數(shù)與百分數(shù)應用題的內(nèi)在聯(lián)系,培養(yǎng)學生的遷移類推能力和數(shù)學的應用意識3、讓學生在具體的情況中感受百分數(shù)來源于生活實際,在應用中體驗數(shù)學的價值。重點:解答求一個數(shù)是另一個數(shù)的百分之幾的應用題。
為什么B和C的答案都對呢?(因為比還可以寫成分數(shù)的形式,但是讀還是讀做幾比幾。)4、判斷:(1)小明今年10歲,爸爸37歲,父親和兒子的年齡比是10∶37。(2)一項工程,甲單獨做要7天完成,乙單獨做要5天完成,甲乙兩人的工作效率比是7∶5。(3)大卡車的載重量是6噸,小卡車的載重量是3噸,大小卡車載重量的比是2。【2】第二層練習1、寫出比值是2的比?!?】隨機練習(看時間情況定)小明今年12歲,是六年一班學生,該班共有42個學生,小明爸爸今年38歲,在保險公司上班,每月工資1000元,年薪12000元,小明媽媽每月工資800元,年薪9600元,她所在單位有職工24人。要求:根據(jù)題目中提供的條件,尋找合適的量,說出兩個數(shù)之間的比。五、課堂總結(jié),拓展延伸。1、這節(jié)課學習了什么知識?你有什么收獲?2、你能說出一些生活中的關(guān)于比的例子嗎?(學生舉例)
多年的小學教學經(jīng)驗告訴我:小學高年級的學生已有一定的自學能力,關(guān)鍵是看我們設(shè)置的情景和學生的生活是不是緊密聯(lián)系,是不是喚起了學生的已有表象,并不和使用多種媒體有絕對聯(lián)系。所以在學習例題中我引導學生自主探討,從中發(fā)現(xiàn)問題,提出問題,最后獨立解決問題,從而訓練學生數(shù)學語言表達能力,發(fā)展學生的創(chuàng)造性思維。⒋質(zhì)疑問難。㈣新知總結(jié)對上面所學知識,教師引導學生作一次歸納總結(jié),讓學生明確要求圓周長時,必須設(shè)法求得圓的直徑或半徑。這樣使學生對求圓周長有明確的認識,進一步深化重點。㈤新知運用國家教委加強與改進小學數(shù)學教學的意見中提出:基礎(chǔ)訓練是使學生融會貫通地掌握知識,形成熟練技能和發(fā)展智力的重要手段。所以在本節(jié)練習中我以基礎(chǔ)練習為主,適當補充了提高練習。
問題導學類比橢圓幾何性質(zhì)的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎(chǔ)。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質(zhì).
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學生總結(jié)本節(jié)課所學主要知識及解題技巧
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學的主要內(nèi)容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應,有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
(4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標為(0,5/3).