提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

小班數學教案:按用途匹配配對

  • 高教版中職數學基礎模塊下冊:10.3《總體、樣本與抽樣方法》優(yōu)秀教案設計

    高教版中職數學基礎模塊下冊:10.3《總體、樣本與抽樣方法》優(yōu)秀教案設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(二) *創(chuàng)設情境 興趣導入 【問題】 用樣本估計總體時,樣本抽取得是否恰當,直接關系到總體特性估計的準確程度.那么,應該如何抽取樣本呢? 介紹 質疑 了解 思考 啟發(fā) 學生思考 0 5*動腦思考 探索新知 【新知識】 下面介紹幾種常用的抽樣方法. 1.簡單隨機抽樣 從一批蘋果中選取10個,每個蘋果被選中的可能性一般是不相等的,放在上面的蘋果更容易被選中.實際過程又不允許將整箱蘋果倒出來,攪拌均勻.因此,10個蘋果做樣本的代表意義就會打折扣. 我們采用抽簽的方法,將蘋果按照某種順序(比如箱、層、行、列順序)編號,寫在小紙片上.將小紙片揉成小團,放到一個不透明的袋子中,充分攪拌后,再從中逐個抽出10個小紙團.最后根據編號找到蘋果. 這種抽樣叫做簡單隨機抽樣. 簡單隨機抽樣必須保證總體的每個個體被抽到的機會是相同的.也就是說,簡單隨機抽樣是等概率抽樣. 抽簽法(俗稱抓鬮法)是最常用的簡單隨機抽樣方法.其主要步驟為 (1)編號做簽:將總體中的N個個體編上號,并把號碼寫到簽上; (2)抽簽得樣本:將做好的簽放到容器中,攪拌均勻后,從中逐個抽出n個簽,得到一個容量為n的樣本. 當總體中所含的個體較少時,通常采用簡單隨機抽樣.例如,從某班抽取10位同學去參加義務勞動,就可采用抽簽的方法來抽取樣本. 當總體中的個體較多時,“攪拌均勻”不容易做到,這樣抽出的樣本的代表性就會打折扣.此時可以采用“隨機數法”抽樣. 產生隨機數的方法很多,利用計算器(或計算機)可以方便地產生隨機數. CASIO fx 82ESPLUS函數型計算器(如圖10-3),利用 · 鍵的第二功能產生隨機數.操作方法是:首先設置精確度并將計算器顯示設置為小數狀態(tài),依次按鍵SHIFT 、 MODE、 2 ,然后連續(xù)按鍵 SHIFT 、 RAN# ,以后每按鍵一次 = 鍵,就能隨機得到0~1之間的一個純小數. 采用“隨機數法”抽樣的步驟為: (1)編號:將總體中的N個個體編上號; (2)選號:指定隨機號的范圍,利用計算器產生n個有效的隨機號(范圍之外或重復的號無效),得到一個容量為n的樣本. 講解 說明 引領 分析 仔細 分析 關鍵 語句 觀察 理解 記憶 帶領 學生 分析 20

  • 《對韻歌》說課稿

    《對韻歌》說課稿

    11.課件出示風字。(出示:風)。認讀生字---風。風是一個后鼻韻母,學生容易讀錯,重點指導讀準字音。師領讀三遍。開火車讀,通過語境組詞,讓孩子加深印象。

  • 對賭協議書

    對賭協議書

    (一)期限本協議為期 年。有效期自 年 月 日起至 年 月 日止。(二)乙方工作目標內容乙方的具體工作目標內容如下:1) 年年度銷售額目標 萬元,利潤目標 %。2) 年年度銷售額目標 萬元,利潤目標 %。3) 年年度銷售額目標 萬元,利潤目標 %。4) 年年度銷售額目標 萬元,利潤目標 %。5) 年年度銷售額目標 萬元,利潤目標 %。(三)乙方期權股份收益年度 年 年 年 年 年點數 0 1 1 2 1共計點數 5個點 說明:1)乙方如實現各年度目標,則可拿到年度的期權股份,待協議期滿后甲方根據約定將乙方共計五個點的期權股份轉為正式注冊股;2)每年度期權股份分紅發(fā)放時間為甲方企業(yè)年度財務結算后一個月內發(fā)放;3)本協議期滿后若甲方企業(yè)年銷售額達成約定目標,則乙方享受甲方企業(yè)的期權股份立即轉為甲方企業(yè)的注冊股份,甲方按雙方約定辦理乙方的期權股份轉注冊股份相關手續(xù),期限為服務期截止日后的一個月內。

  • 人教版高中數學選擇性必修二導數的四則運算法則教學設計

    人教版高中數學選擇性必修二導數的四則運算法則教學設計

    求函數的導數的策略(1)先區(qū)分函數的運算特點,即函數的和、差、積、商,再根據導數的運算法則求導數;(2)對于三個以上函數的積、商的導數,依次轉化為“兩個”函數的積、商的導數計算.跟蹤訓練1 求下列函數的導數:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓練2 求下列函數的導數(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數的導數;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 高教版中職數學基礎模塊下冊:6.3《等比數列》教學設計

    高教版中職數學基礎模塊下冊:6.3《等比數列》教學設計

    課題序號6-3授課形式講授與練習課題名稱等比數列課時2教學 目標知識 目標理解并掌握等比數列的概念,掌握并能應用等比數列的通項公式及前n項和公式。能力 目標通過公式的推導和應用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題、分析問題、解決問題的一般思路和方法 。素質 目標通過對等比數列知識的學習,培養(yǎng)學生細心觀察、認真分析、正確總結的科學思維習慣和嚴謹的學習態(tài)度。教學 重點等比數列的概念及通項公式、前n項和公式的推導過程及運用。教學 難點對等比數列的通項公式與求和公式變式運用。教學內容 調整無學生知識與 能力準備數列的概念課后拓展 練習 習題(P.21): 3,4.教學 反思 教研室 審核

  • 高教版中職數學基礎模塊下冊:6.2《等差數列》教學設計

    高教版中職數學基礎模塊下冊:6.2《等差數列》教學設計

    系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數2課時授課周數第一周授課日期2012.2.15授課地點 教室課題第六章數列分課題§6.2 等差數列教學目標1. 理解等差數列的概念,掌握等差數列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數列的概念和通項公式解決問題. 3.等差數列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數列的概念及其通項公式. 教學難點等差數列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內容姓名成績1.數列的定義? 答: 2. 數列的通項公式? 答: 板書設計 §6.2.1等差數列的概念 1. 1.等差數列的定義 公差:d 2.常數列 3.等差數列的通項公式 an=a1+(n-1)d. 等差數列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結本節(jié)課主要采用自主探究式教學方法.充分利用現實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而達到使學生既獲得知識又發(fā)展智能的目的.

  • 【高教版】中職數學拓展模塊:1.2《正弦型函數》教學設計

    【高教版】中職數學拓展模塊:1.2《正弦型函數》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數. *創(chuàng)設情境 興趣導入 與正弦函數圖像的做法類似,可以用“五點法”作出正弦型函數的圖像.正弦型函數的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數在一個周期內的簡圖. 分析 函數與函數的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯結各點,得到函數在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15

  • 高教版中職數學基礎模塊下冊:10.1《計數原理》教學設計

    高教版中職數學基礎模塊下冊:10.1《計數原理》教學設計

    授課 日期 班級16高造價 課題: §10.1 計數原理 教學目的要求: 1.掌握分類計數原理與分步計數原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設計或授課提綱 §10.1 計數原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別

  • 人教版高中數學選擇性必修二等比數列的概念 (1) 教學設計

    人教版高中數學選擇性必修二等比數列的概念 (1) 教學設計

    新知探究我們知道,等差數列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數” 。類比等差數列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產生的后代個數依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中數學選擇性必修二等差數列的前n項和公式(1)教學設計

    人教版高中數學選擇性必修二等差數列的前n項和公式(1)教學設計

    高斯(Gauss,1777-1855),德國數學家,近代數學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數列:1,2,3,…,n,"… " 前100項的和問題.等差數列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數列{an} 是等差數列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數的奇偶進行分類討論.當n為偶數時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數數時, n-1為偶數

  • 人教版高中數學選擇性必修二導數的概念及其幾何意義教學設計

    人教版高中數學選擇性必修二導數的概念及其幾何意義教學設計

    新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數y=f(x) ,設自變量x從x_0變化到x_0+ ?x ,相應地,函數值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數從x_0到x_0+?x的平均變化率。1.導數的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數學選擇性必修二等比數列的概念 (2) 教學設計

    人教版高中數學選擇性必修二等比數列的概念 (2) 教學設計

    二、典例解析例4. 用 10 000元購買某個理財產品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結算的利息不少于按月結算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構成等比數列.解:(1)設這筆錢存 n 個月以后的本利和組成一個數列{a_n },則{a_n }是等比數列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數列{b_n },則{b_n }也是一個等比數列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數學選擇性必修二等比數列的前n項和公式   (1) 教學設計

    人教版高中數學選擇性必修二等比數列的前n項和公式 (1) 教學設計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數的2倍,直到第64個格子.請給我足夠的麥粒以實現上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質量為40克,據查,2016--2017年度世界年度小麥產量約為7.5億噸,根據以上數據,判斷國王是否能實現他的諾言.問題1:每個格子里放的麥粒數可以構成一個數列,請判斷分析這個數列是否是等比數列?并寫出這個等比數列的通項公式.是等比數列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數學問題.

  • 人教版高中數學選擇性必修二等差數列的概念(1)教學設計

    人教版高中數學選擇性必修二等差數列的概念(1)教學設計

    我們知道數列是一種特殊的函數,在函數的研究中,我們在理解了函數的一般概念,了解了函數變化規(guī)律的研究內容(如單調性,奇偶性等)后,通過研究基本初等函數不僅加深了對函數的理解,而且掌握了冪函數,指數函數,對數函數,三角函數等非常有用的函數模型。類似地,在了解了數列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數學問題,從中感受數學模型的現實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內到外各圈的示板數依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數學選擇性必修二等差數列的概念(2)教學設計

    人教版高中數學選擇性必修二等差數列的概念(2)教學設計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經驗表明,每經過一年其價值會減少d(d為正常數)萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構成數列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數列.10年之內(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數列{an}.由已知條件,得an=an-1-d(n≥2).所以數列{an}是一個公差為-d的等差數列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數學選擇性必修二等比數列的前n項和公式   (2) 教學設計

    人教版高中數學選擇性必修二等比數列的前n項和公式 (2) 教學設計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數列表示各正方形的面積,根據條件可知,這是一個等比數列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數學選擇性必修二數列的概念(1)教學設計

    人教版高中數學選擇性必修二數列的概念(1)教學設計

    情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數列. 那么什么叫數列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數據(單位:厘米)依次排成一列數:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現h_i中的i反映了身高按歲數從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數,h_2=87是排在第2位的數〖"…" ,h〗_17 =168是排在第17位的數,它們之間不能交換位置,所以①具有確定順序的一列數。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數學選擇性必修二等差數列的前n項和公式(2)教學設計

    人教版高中數學選擇性必修二等差數列的前n項和公式(2)教學設計

    課前小測1.思考辨析(1)若Sn為等差數列{an}的前n項和,則數列Snn也是等差數列.( )(2)若a1>0,d<0,則等差數列中所有正項之和最大.( )(3)在等差數列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數為2n+1的等差數列中,所有奇數項的和為165,所有偶數項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數依次排成一列,構成數列{an} ,設數列{an} 的前n項和為S_n。

  • 人教版高中數學選擇性必修二函數的單調性(1)  教學設計

    人教版高中數學選擇性必修二函數的單調性(1) 教學設計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數f (x)在這個區(qū)間上單調遞減. ( )(2)函數在某一點的導數越大,函數在該點處的切線越“陡峭”. ( )(3)函數在某個區(qū)間上變化越快,函數在這個區(qū)間上導數的絕對值越大.( )(4)判斷函數單調性時,在區(qū)間內的個別點f ′(x)=0,不影響函數在此區(qū)間的單調性.( )[解析] (1)√ 函數f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數f (x)在這個區(qū)間上單調遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關,故錯誤.(3)√ 函數在某個區(qū)間上變化的快慢,和函數導數的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數f (x)在區(qū)間內單調遞增(減),故f ′(x)=0不影響函數單調性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數判斷下列函數的單調性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數在R上單調遞增,如圖(1)所示

  • 人教版高中數學選修3二項式系數的性質教學設計

    人教版高中數學選修3二項式系數的性質教學設計

    1.對稱性與首末兩端“等距離”的兩個二項式系數相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數時,中間的一項C_n^(n/2)取得最大值;當n是奇數時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數之和為2^n1. 在(a+b)8的展開式中,二項式系數最大的項為 ,在(a+b)9的展開式中,二項式系數最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

上一頁123...129130131132133134135136137138139140下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!