提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

大班數(shù)學(xué)教案:有趣的數(shù)字

  • 北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)分式的加減法說(shuō)課稿2篇

    北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)分式的加減法說(shuō)課稿2篇

    一、說(shuō)教材《分式的加減法》是本冊(cè)教材第三章《分式》重要內(nèi)容,是進(jìn)一步學(xué)習(xí)分式方程、反比例函數(shù)以及其它數(shù)學(xué)知識(shí)的基礎(chǔ),同時(shí)也是學(xué)習(xí)物理、化學(xué)等學(xué)科不可缺少的工具。與其它數(shù)學(xué)知識(shí)一樣,它在實(shí)際生活中有著廣泛的應(yīng)用。學(xué)習(xí)分式的加減法并熟練地進(jìn)行運(yùn)算是學(xué)好分式運(yùn)算的關(guān)鍵,為學(xué)生綜合運(yùn)用多種運(yùn)算法則拓寬了空間,有利于學(xué)生對(duì)雙基的掌握,在綜合運(yùn)用多種運(yùn)算法則的過(guò)程中,逐漸形成運(yùn)算能力。同時(shí)本節(jié)課的教學(xué)難度有所增加,學(xué)生通過(guò)觀察、類(lèi)比、猜想、嘗試等一系列思維活動(dòng)中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應(yīng)用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標(biāo)和重點(diǎn)、難點(diǎn)如下:(一)說(shuō)教學(xué)目標(biāo):1.知識(shí)與技能目標(biāo):理解并掌握異分母分式加減法的法則;經(jīng)歷異分母分式的加減運(yùn)算和通分的過(guò)程,訓(xùn)練學(xué)生的分式運(yùn)算能力,培養(yǎng)學(xué)生在學(xué)習(xí)中轉(zhuǎn)化未知問(wèn)題為已知問(wèn)題的能力;進(jìn)一步通過(guò)實(shí)例發(fā)展學(xué)生的符號(hào)感。

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)垂直與弦的直徑說(shuō)課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)垂直與弦的直徑說(shuō)課稿

    至此,估計(jì)學(xué)生基本能夠掌握定理,達(dá)到預(yù)定目標(biāo),這時(shí),利用提問(wèn)形式,師生共同進(jìn)行小結(jié)。五、幾點(diǎn)說(shuō)明1、板書(shū)設(shè)計(jì):為了使本節(jié)課更具理論性、邏輯性,我將板書(shū)設(shè)計(jì)分為三部分,第一部分為圓的軸對(duì)稱(chēng)性,第二部分為垂徑定理,第三部分為測(cè)評(píng)反饋區(qū)(學(xué)生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒(méi)有涉及逆定理。3、設(shè)計(jì)要突出的特色:為了給學(xué)生營(yíng)造一個(gè)民主、平等而又富有詩(shī)意的課堂,我以新數(shù)學(xué)課程標(biāo)準(zhǔn)下的基本理念和總體目標(biāo)為指導(dǎo)思想,在教學(xué)過(guò)程中始終面向全體學(xué)生,依據(jù)學(xué)生的實(shí)際水平,選擇適當(dāng)?shù)慕虒W(xué)起點(diǎn)和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過(guò)程中,獲得良好的情感體驗(yàn)。通過(guò)“實(shí)驗(yàn)--觀察--猜想--證明”的思想,讓每個(gè)學(xué)生都有所得,我注意前后知識(shí)的鏈接,進(jìn)行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時(shí)讓學(xué)生利用所學(xué)知識(shí)解決實(shí)際問(wèn)題,感受理論聯(lián)系實(shí)際的思想方法。

  • 北師大版初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的性質(zhì)說(shuō)課稿

    北師大版初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的性質(zhì)說(shuō)課稿

    接著,引導(dǎo)學(xué)生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫(huà)在黑板上,得到以下的數(shù)學(xué)表達(dá)式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對(duì)應(yīng)高。求證:AD/A/D/=K首先讓學(xué)生回憶,證明線段成比例學(xué)過(guò)哪些方法,接著引導(dǎo)學(xué)生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學(xué)生能找到含對(duì)應(yīng)高和對(duì)應(yīng)邊的兩對(duì)三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學(xué)生口述教師板書(shū)規(guī)范的證明過(guò)程。接著問(wèn)學(xué)生還有哪些證明方法?同理可證得其他兩邊上的對(duì)應(yīng)高的比等于相似比,所以命題1具有一般性。而對(duì)于命題2、命題3的數(shù)學(xué)表達(dá)式和證明方法與命題1類(lèi)似,所以為了提高教學(xué)效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來(lái),并指導(dǎo)學(xué)生課堂練習(xí)證明這兩個(gè)命題。

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)生活中的概率說(shuō)課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)生活中的概率說(shuō)課稿

    5、課本練習(xí):P129引導(dǎo)學(xué)生運(yùn)用隨機(jī)數(shù)表來(lái)模擬試驗(yàn)過(guò)程并給予解答。問(wèn)題2:有四個(gè)鬮,其中兩個(gè)分別代表兩件獎(jiǎng)品,四個(gè)人按順序依次抓鬮來(lái)決定這兩件獎(jiǎng)品的歸屬,先抓的人中獎(jiǎng)率一定大嗎?教法:可組織學(xué)生用試驗(yàn)的方法來(lái)說(shuō)明問(wèn)題,對(duì)于試驗(yàn)的結(jié)果是有說(shuō)服力的,很容易使學(xué)生相信摸獎(jiǎng)的次序?qū)χ歇?jiǎng)的概率沒(méi)有影響。問(wèn)題3:彩民甲研究了近幾期這種體育彩票的中獎(jiǎng)號(hào)碼,發(fā)現(xiàn)數(shù)字06和08出現(xiàn)的次數(shù)最多,他認(rèn)為,06和08是“幸運(yùn)號(hào)碼”,因此,他在所買(mǎi)的每一注彩票中都選上了06和08。你認(rèn)為他這樣做有道理嗎?教法說(shuō)明:要讓學(xué)生看到試驗(yàn)方法對(duì)試驗(yàn)結(jié)果的影響:1、 因?yàn)殚_(kāi)獎(jiǎng)用的36個(gè)球是均勻的、無(wú)差別的,所以每個(gè)號(hào)碼被選為中獎(jiǎng)號(hào)碼的可能性是一樣的,不存在“幸運(yùn)號(hào)碼”。

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)圓的對(duì)稱(chēng)性說(shuō)課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)圓的對(duì)稱(chēng)性說(shuō)課稿

    本節(jié)課的設(shè)計(jì)是以教學(xué)大綱和教材為依據(jù),遵循因材施教的原則,堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動(dòng)性。教學(xué)過(guò)程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過(guò)程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對(duì)學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。本節(jié)課采用教具輔助教學(xué),旨在呈現(xiàn)更直觀的形象,提高學(xué)生的積極性和主動(dòng)性,并提高課堂效率。2、學(xué)法研究“贈(zèng)人以魚(yú),不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的知識(shí),首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己在某一種環(huán)境下不知不覺(jué)中運(yùn)用舊知識(shí)的鑰匙去打開(kāi)新知識(shí)的大門(mén),進(jìn)入新知識(shí)的領(lǐng)域,從不同角度去分析、解決新問(wèn)題,通過(guò)基礎(chǔ)練習(xí)、提高練習(xí)和拓展練習(xí)發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)猜拳游戲中的學(xué)問(wèn)說(shuō)課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)猜拳游戲中的學(xué)問(wèn)說(shuō)課稿

    想一想:為什么在師生猜拳中老師一直說(shuō)“5”能贏?為什么選擇和多的那隊(duì)沒(méi)勝,而選擇和少的那隊(duì)卻勝了?選擇可能性大的是不是每次一定能贏?選擇可能性小是不是每一次一定都輸?(至此,本節(jié)課到了一個(gè)升華層次,學(xué)生通過(guò)互動(dòng)游戲、自主探究、討論分析,從而揭示了“猜拳游戲”中的秘密,對(duì)“可能性”的理解達(dá)到了一個(gè)更高水平,有效地完成了本課重難點(diǎn)教學(xué)。)(4)實(shí)踐驗(yàn)證。實(shí)踐驗(yàn)證理論。再一次組織學(xué)生有目的地猜和,進(jìn)行實(shí)踐驗(yàn)證。讓理論與實(shí)踐有機(jī)的結(jié)合(三)拓展創(chuàng)新,內(nèi)化提升。兒童用品商店將要舉行促銷(xiāo)活動(dòng),凡到商店購(gòu)物的顧客都可參加《轉(zhuǎn)盤(pán)轉(zhuǎn)轉(zhuǎn)樂(lè)》活動(dòng)。每位顧客可轉(zhuǎn)兩次,用兩次指針?biāo)笖?shù)相加得到一個(gè)和,不同的和能得到相應(yīng)的獎(jiǎng)項(xiàng)。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)搭配中的學(xué)問(wèn)說(shuō)課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)搭配中的學(xué)問(wèn)說(shuō)課稿2篇

    師:同學(xué)們真聰明,小精靈的問(wèn)題回答出來(lái)了,現(xiàn)在就讓我們一起走進(jìn)兒童樂(lè)園吧。(出示課件)請(qǐng)大家注意觀察,兒童樂(lè)園中都有哪些景點(diǎn)?師:從兒童樂(lè)園出發(fā)經(jīng)過(guò)百鳥(niǎo)園去猴山一共有幾條路?請(qǐng)同學(xué)們仔細(xì)觀察:從兒童樂(lè)園到百鳥(niǎo)園有幾條路?從百鳥(niǎo)園去猴山有幾條路?(生回答。)師:我們給這5條路分別標(biāo)上序號(hào)。(課件演示)現(xiàn)在請(qǐng)同學(xué)們想一想從兒童樂(lè)園的入口經(jīng)過(guò)百鳥(niǎo)園到達(dá)猴山一共有幾條路線?請(qǐng)同學(xué)們把答案寫(xiě)在記錄紙上。(生匯報(bào)。)師:路線設(shè)計(jì)好了,讓我們一起到猴山看一看可愛(ài)的小猴子吧!(放猴山的錄像。)師:看,它們是一對(duì)著名的動(dòng)物小明星,會(huì)演雜技的小猴寶寶和貝貝,你們想和它們照相留念嗎?生:想。師:好!那我們每個(gè)人都和寶寶、貝貝各照一張相片,同學(xué)們想一想,我們?nèi)?0個(gè)人一共要照多少?gòu)埾嗥瑑耗兀?/p>

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.2《直線的方程》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.2《直線的方程》教學(xué)設(shè)計(jì)

    課程名稱(chēng)數(shù)學(xué)課題名稱(chēng)8.2 直線的方程課時(shí)2授課日期2016.3任課教師劉娜目標(biāo)群體14級(jí)五高班教學(xué)環(huán)境教室學(xué)習(xí)目標(biāo)知識(shí)目標(biāo): (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計(jì)算方法. 職業(yè)通用能力目標(biāo): 正確分析問(wèn)題的能力 制造業(yè)通用能力目標(biāo): 正確分析問(wèn)題的能力學(xué)習(xí)重點(diǎn)直線的斜率公式的應(yīng)用.學(xué)習(xí)難點(diǎn)直線的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問(wèn)教學(xué)媒體黑板、粉筆

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.1《平面的基本性質(zhì)》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.1《平面的基本性質(zhì)》教學(xué)設(shè)計(jì)

    課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式新課授課章節(jié) 名稱(chēng)§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會(huì)用符號(hào)表示點(diǎn)、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會(huì)應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會(huì)用斜二測(cè)畫(huà)法畫(huà)立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆?hào)表示點(diǎn)、線、面之間的關(guān)系;會(huì)用斜二測(cè)畫(huà)法畫(huà)立體圖形的直觀圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過(guò)渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動(dòng)手畫(huà),動(dòng)腦想,但立體幾何的語(yǔ)言及想象能力差

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶(hù)的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的方差教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的方差教學(xué)設(shè)計(jì)

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬(wàn)元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.

上一頁(yè)123...8990919293949596979899100下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!