客觀世界中的各種各樣的運(yùn)動(dòng)變化現(xiàn)象均可表現(xiàn)為變量間的對(duì)應(yīng)關(guān)系,這種關(guān)系常常可用函數(shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應(yīng)的運(yùn)動(dòng)變化規(guī)律.課程目標(biāo)1、能夠找出簡單實(shí)際問題中的函數(shù)關(guān)系式,初步體會(huì)應(yīng)用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實(shí)際問題; 2、感受運(yùn)用函數(shù)概念建立模型的過程和方法,體會(huì)一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學(xué)和其他學(xué)科中的重要性. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡單實(shí)際問題中的函數(shù)關(guān)系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學(xué)運(yùn)算:結(jié)合函數(shù)圖象或其單調(diào)性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對(duì)稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學(xué)建模:在具體問題情境中,運(yùn)用數(shù)形結(jié)合思想,將自然語言用數(shù)學(xué)表達(dá)式表示出來。 重點(diǎn):運(yùn)用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實(shí)際問題;難點(diǎn):運(yùn)用函數(shù)思想理解和處理現(xiàn)實(shí)生活和社會(huì)中的簡單問題.
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進(jìn)行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識(shí)與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會(huì)三角恒等變換的基本思想方法,以及進(jìn)行簡單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡、求值以及證明,進(jìn)而進(jìn)行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點(diǎn):能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用; 難點(diǎn):掌握利用單位圓中正切函數(shù)定義得到其圖象.
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對(duì)于周期函數(shù),我們只要認(rèn)識(shí)清楚它在一個(gè)周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個(gè)關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標(biāo)1.掌握“五點(diǎn)法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運(yùn)算:五點(diǎn)作圖; 5.數(shù)學(xué)建模:通過正弦、余弦圖象圖像,解決不等式問題及零點(diǎn)問題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會(huì)利用周期性定義和誘導(dǎo)公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡單問題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對(duì)稱性.
指數(shù)函數(shù)與冪函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)冪函數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納指數(shù)函數(shù)的概念,通過函數(shù)的三個(gè)特征解決一些與函數(shù)概念有關(guān)的問題.課程目標(biāo)1、通過實(shí)際問題了解指數(shù)函數(shù)的實(shí)際背景;2、理解指數(shù)函數(shù)的概念和意義.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:指數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用指數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)指數(shù)函數(shù)概念.重點(diǎn):理解指數(shù)函數(shù)的概念和意義;難點(diǎn):理解指數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入在本章的開頭,問題(1)中時(shí)間 與GDP值中的 ,請(qǐng)問這兩個(gè)函數(shù)有什么共同特征.要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
問題導(dǎo)入:問題一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒有其他差異。
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
3、討論問題二:我國、我市人口增長對(duì)環(huán)境有那些影響?教師:讓第三、第四組學(xué)生分別介紹、展示課前調(diào)查到的資料,說明人口增長對(duì)我國環(huán)境的影響、對(duì)三亞市環(huán)境的影響。學(xué)生:第三組學(xué)生派代表介紹人口增長過快對(duì)我國生態(tài)環(huán)境的影響。第四小組由學(xué)生自己主持“我市人口增長過快對(duì)三亞市生態(tài)環(huán)境的影響”討論會(huì),匯報(bào)課前調(diào)查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學(xué)生討論、補(bǔ)充和完善。學(xué)生:觀察老師投影圖片并進(jìn)行討論,對(duì)圖片問題進(jìn)行補(bǔ)充和完善。教學(xué)意圖:通過讓學(xué)生匯報(bào)、觀察、主持,能讓學(xué)生親身體驗(yàn),更深刻地理解人口增長對(duì)生態(tài)環(huán)境的影響,培養(yǎng)和提高學(xué)生的表達(dá)能力、觀察能力、主持會(huì)議的能力。4、討論問題三:怎樣協(xié)調(diào)人與環(huán)境的關(guān)系?教師:組織第五組學(xué)生進(jìn)行匯報(bào)課前調(diào)查到的資料,交流、討論、發(fā)表意見和見解。學(xué)生:展示課件、圖片,匯報(bào)調(diào)查到的情況,提出合理建議。
通過列表對(duì)比法、歸納法、、多媒體輔助法等教學(xué)方法,突破理論性強(qiáng)、不宜理解的“3S”原理與區(qū)別的知識(shí)難點(diǎn)。學(xué)生更是學(xué)會(huì)運(yùn)用圖表方法、高效記憶法、合作學(xué)習(xí)法等方法學(xué)習(xí)地理知識(shí),增加學(xué)習(xí)能力。[幻燈片] “3S技術(shù)”的應(yīng)用:地理信息技術(shù)的應(yīng)用十分廣泛,從實(shí)際身旁的社會(huì)生產(chǎn)生活,到地理學(xué)的區(qū)域地理環(huán)境研究。學(xué)生的年齡和認(rèn)知范圍決定,此部分的案例教學(xué)的運(yùn)用,前者容易接觸到、簡單直觀、易區(qū)分掌握“3S”技術(shù)特點(diǎn)和具體應(yīng)用。而后者涉及地理學(xué)科的綜合性和區(qū)域性的特點(diǎn),難度較大。針對(duì)學(xué)情特點(diǎn),我多以前者案例入手學(xué)習(xí),以后者案例加以補(bǔ)充。案例:遙感:(1)視頻 專家解說衛(wèi)星遙感受災(zāi)影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號(hào)”衛(wèi)星提供汶川的災(zāi)區(qū)遙感圖像(4)教材 閱讀 遙感在農(nóng)業(yè)方面的應(yīng)用
【教學(xué)目標(biāo)】知識(shí)與技能:了解我國不同等級(jí)城市的劃分,并理論聯(lián)系實(shí)際辨別現(xiàn)實(shí)社會(huì)的城市等級(jí)運(yùn)用有關(guān)原理,說明不同等級(jí)城市服務(wù)范圍的差異。了解城市服務(wù)范圍與地理位置的關(guān)系。掌握不同等級(jí)城市的分布特點(diǎn)了解稱城市六邊形理論,并能用其解釋荷蘭圩田居民點(diǎn)設(shè)置問題過程與方法:通過對(duì)棗強(qiáng)鎮(zhèn)及上海城市等級(jí)演化分布的學(xué)習(xí),掌握不同等級(jí)城市城市服務(wù)范圍與功能以及城市等級(jí)提高的基本條件通過對(duì)德國城市分布案例的學(xué)習(xí),總結(jié)歸納出不同等級(jí)城市分布規(guī)律通過城市六邊形理論的學(xué)習(xí),學(xué)會(huì)分析城市居民點(diǎn)布局等現(xiàn)實(shí)問題情感態(tài)度與價(jià)值觀:通過學(xué)生對(duì)我國不同等級(jí)城市(經(jīng)濟(jì)、人口、交通、服務(wù)種類)等相關(guān)資料的搜集,讓學(xué)生關(guān)心我國基本地理國情,增強(qiáng)熱愛祖國的情感。養(yǎng)成求真、求實(shí)的科學(xué)態(tài)度,提高地理審美情趣。
【這部分的設(shè)計(jì)目的,要學(xué)生明白熱帶雨林只是一個(gè)案例,我們的目的是要合理開發(fā)和保護(hù)全世界的森林。由森林的開發(fā)與保護(hù)來明確區(qū)域發(fā)展過程中產(chǎn)生的環(huán)境問題,危害及治理保護(hù)措施。】然后知識(shí)遷移——東北林區(qū)的開發(fā)與保護(hù)介紹東北地區(qū)的森林材料:東北林區(qū)是我國最大的天然林區(qū),主要分布于大、小興安嶺及長白山地,在平衡大氣成分、凈化空氣、補(bǔ)給土壤有機(jī)質(zhì)、涵養(yǎng)水源、保持水土、改善地方氣候有重要的作用。它還是我國最大的采伐基地,宜林地區(qū)廣,森林樹種豐富。 東北林區(qū)開發(fā)中的問題及影響點(diǎn)撥:由于人類的嚴(yán)重超采,采育脫節(jié),亂砍濫伐,毀林開荒,再加上森林火災(zāi),東北林區(qū)的面積在銳減,帶來了嚴(yán)重的生態(tài)惡化。我們該如何開發(fā)和保護(hù)東北地區(qū)的森林呢?
1.導(dǎo)入新課:通過視頻“阿根廷的潘帕斯草原”,引起學(xué)生的興趣,進(jìn)而引出新的學(xué)習(xí)內(nèi)容——以畜牧業(yè)為主的農(nóng)業(yè)地域類型。2.新課講授:第一課時(shí),首先通過展示“世界大牧場放牧業(yè)分布圖”,引出對(duì)大牧場放牧業(yè)的初步認(rèn)識(shí),了解其分布范圍;然后通過展示“潘帕斯草原的地形圖”“氣候圖”和“牧牛業(yè)景觀圖”,討論分析大牧場放牧業(yè)形成的區(qū)位條件,并進(jìn)行案例分析,學(xué)習(xí)該種農(nóng)業(yè)的特點(diǎn);最后,理論聯(lián)系實(shí)際,展示:“中國地形圖”“氣候圖”“人口圖”“交通圖”和“內(nèi)蒙古牧區(qū)圖”,分組討論我國內(nèi)蒙古地區(qū)能否采用潘帕斯草原大牧場放牧業(yè)的生產(chǎn)模式。第二課時(shí),首先通過設(shè)問順利從大牧場放牧業(yè)轉(zhuǎn)入乳蓄業(yè),通過講述讓學(xué)生了解乳蓄業(yè)的概念;然后通過展示世界乳畜業(yè)分布圖,了解乳蓄業(yè)主要分布在哪些地區(qū);接著,通過西歐乳蓄業(yè)的案例分析,得到乳蓄業(yè)發(fā)展的區(qū)位因素及其特點(diǎn)。
在這段教學(xué)中可以插入世界主要鐵礦、煤礦,以及我國主要的礦產(chǎn)基地、鋼鐵生產(chǎn)基地的相關(guān)內(nèi)容,不失為區(qū)域地理知識(shí)的很好補(bǔ)充和鞏固。那么從現(xiàn)狀來看我國的鋼鐵產(chǎn)業(yè)基地多數(shù)污染較為嚴(yán)重,可見工業(yè)區(qū)位的選擇同樣要顧及到環(huán)境的因素,由此引入下一部分的內(nèi)容。除了傳統(tǒng)意義上的工業(yè)區(qū)位因素外,環(huán)境、政策以及決策者的理念和心理等日益受到人們的關(guān)注。在這段文字的處理上,只需進(jìn)行概念、道理上的陳述即可,重點(diǎn)要放在污染工業(yè)在城市中的布局這一知識(shí)點(diǎn)上。首先要了解什么工業(yè)會(huì)造成怎樣的污染,然后根據(jù)污染的類別分別講解不同的應(yīng)對(duì)方略,最后將配以適當(dāng)?shù)睦}以期提高學(xué)生的整體把握程度和綜合運(yùn)用能力。最后將對(duì)本節(jié)內(nèi)容進(jìn)行小結(jié),要在小結(jié)中闡述清楚本節(jié)課的兩大內(nèi)容:即工業(yè)的區(qū)位因素和工業(yè)區(qū)位的選擇。然后點(diǎn)明本節(jié)課的主要知識(shí)點(diǎn)、難點(diǎn)、重點(diǎn)。在時(shí)間允許的情況下可以適當(dāng)安排幾道有關(guān)主導(dǎo)產(chǎn)業(yè)和城市工業(yè)布局的例題加以練習(xí)。