元旦國(guó)旗下講話稿一:親愛(ài)的同學(xué)們:今天是XX年,12月30日。再過(guò)一天,就是新年了。我們已告別了不平凡的XX年,又迎來(lái)了充滿希望的XX年。迎著朝陽(yáng)的光輝,我們?cè)僖淮文饺缴鸬膰?guó)旗;踏著歲月的腳步,我們又一次走到了憧憬希望的起點(diǎn)。在此,讓我謹(jǐn)代表學(xué)校向全體老師向同學(xué)們送上誠(chéng)摯的新年祝福。同學(xué)們,你們知道1月1日又稱什么節(jié)日嗎?那“元旦”這一節(jié)日又包含著什么深意呢?“元”是開(kāi)始,之意;“旦”是早晨,一天之意?!霸本褪且荒甑拈_(kāi)始,一年的天。從字面上看,“旦”字下面的一橫代表著波濤澎湃的海面,一輪紅日正從海上噴薄而出放射著燦爛輝煌的光芒,這個(gè)象形字生動(dòng)地反映了旭日東升的形象。把“元旦”合在一起,就是要人們以蓬勃的朝氣和奮發(fā)的斗志來(lái)迎接嶄新的一年。親愛(ài)的同學(xué)們,當(dāng)你沉浸于新年的歡樂(lè)之中時(shí),請(qǐng)不要忘記即將到來(lái)的期末考試,更不要忘了新的一年應(yīng)該有新的目標(biāo),新的人生起點(diǎn)。XX年展開(kāi)的這張新的畫(huà)卷正等著你去精彩地描繪呢!一年過(guò)去時(shí),給我們帶來(lái)的感受決不如撕去日歷乘風(fēng)破浪,偉大祖國(guó)又迎來(lái)了充滿希望的一年。
篇一尊敬的老師、親愛(ài)的同學(xué)們:大家早上好。春回大地煦風(fēng)暖,XX年,當(dāng)春天的陽(yáng)光再一次普照在西南科大文藝學(xué)院這片熱土?xí)r,我們憧憬萬(wàn)分,我們心潮澎湃。前幾日冬奧會(huì)順利閉幕,中國(guó)獲第七名的成績(jī),這是中國(guó)在冬奧會(huì)的歷史突破,一霎那我們就感覺(jué)到身為年輕一代,我們肩負(fù)著任重道遠(yuǎn)的歷史使命和社會(huì)責(zé)任。新學(xué)期開(kāi)始,我們更要以全新的狀態(tài)類(lèi)迎接新一輪的挑戰(zhàn)。各位同學(xué)們,西南科技大學(xué)文藝學(xué)院是一片沃土,提供給我們成長(zhǎng)的條件,西南科大文藝學(xué)院也是值得我們驕傲的舞臺(tái),給我們展示才華的機(jī)會(huì)。文藝學(xué)院又是一片大海,讓我們揚(yáng)帆遠(yuǎn)航。莎士比亞說(shuō):“上天生下我們,是要把我們當(dāng)做火,不是照亮自己,而是普照世界?!弊鳛槲髂峡拼蟮膶W(xué)生,我們應(yīng)當(dāng)在新學(xué)期爭(zhēng)當(dāng)五個(gè)方面的模范:做身體心理健康的模范,做思想道德高尚的模范,做掌握科學(xué)文化素養(yǎng)的模范,做有勞動(dòng)技能的模范,做有藝術(shù)審美修養(yǎng)的模范。而這五種模范正是素質(zhì)教育要求的五個(gè)綜合素質(zhì)。作為西南科技大學(xué)的學(xué)生就是應(yīng)該有高要求,高素質(zhì)。恩格斯講過(guò):“人生境界是有所作為”,那么時(shí)值新學(xué)期剛剛開(kāi)學(xué),各位同學(xué)應(yīng)該重新審視自己的行為,看看自己做的怎么樣,是否有自己的學(xué)習(xí)計(jì)劃,是否完成了老師交給的任務(wù),是否合理安排每天的學(xué)習(xí)生活,我們應(yīng)該爭(zhēng)做這5個(gè)模范。我們不會(huì)畏懼嚴(yán)峻學(xué)習(xí)任務(wù)的挑戰(zhàn),因?yàn)楹Df(shuō)過(guò):“嚴(yán)冬劫掠去的一切,新春會(huì)給你還來(lái)?!?/p>
(三)輔導(dǎo)員總結(jié)一個(gè)人的力量是很小的,大家只有團(tuán)結(jié)一致,力量才是最大的。大家團(tuán)結(jié)在一起,一起學(xué)習(xí),一起活動(dòng),共同努力,才能把我們的班集體建設(shè)的更好。希望同學(xué)們能手拉手、心連心,為創(chuàng)建和諧美好的班集體貢獻(xiàn)自己的力量。五、說(shuō)效果少先隊(duì)活動(dòng)課已經(jīng)結(jié)束了。從參加小品的學(xué)生身上,我也感受到了團(tuán)結(jié)的力量,:團(tuán)結(jié)起來(lái)才有最大的力量中,我知道了,孩子們懂得了團(tuán)結(jié);從那個(gè)向我埋怨胳膊很疼卻在我問(wèn)道為什么不放手的時(shí)候,不假思索地回答:放手就輸了!的女生身上,我知道了,孩子們懂得了信任,沒(méi)有人會(huì)放手;從“兩人三足”的一二一二口號(hào)聲中,我知道了,孩子們學(xué)會(huì)了配合;從最后的采訪回答:我們?nèi)绻芑ハ啾O(jiān)督不扔垃圾,我們班的衛(wèi)生就不會(huì)扣那么多分,我知道了,他們將會(huì)互相幫助。這就是我的少先隊(duì)活動(dòng)課,就是孩子們的收獲。謝謝大家!
總之,在這屆全國(guó)青教賽中,絕大多數(shù)參賽選手都很好,都很專(zhuān)業(yè),都很努力,但是也存在一些問(wèn)題,也出現(xiàn)了一些違規(guī)行為。(略)對(duì)于存在這些問(wèn)題的選手,評(píng)委會(huì)經(jīng)過(guò)集體討論,按照有關(guān)規(guī)則給予了相應(yīng)的處罰。按照總結(jié)大會(huì)的發(fā)言習(xí)慣,我也要表示感謝。第一,我要代表全體評(píng)委,感謝這屆大賽的主辦方組委會(huì)對(duì)我們的信任,讓我們擔(dān)任了競(jìng)賽的評(píng)委。第二,我要代表全體評(píng)委,感謝這屆大賽的承辦方清華大學(xué),為我們提供了細(xì)致、周到、高效的服務(wù)和技術(shù)支持,特別是那些志愿者,不厭其煩地指導(dǎo)我們使用電子評(píng)分系統(tǒng)。對(duì)于像我這樣的老教師來(lái)說(shuō),這還是挺有難度的。第三,我要代表全體評(píng)委,感謝參賽的選手。我們不僅從你們的講課中學(xué)到了新的知識(shí)和方法,也在你們身上看到了我們的過(guò)去,還看到中國(guó)高等教育的未來(lái)。雖然這不是未來(lái)的全景,但是令人欣慰令人鼓舞的畫(huà)面。第四,作為評(píng)委會(huì)主任,我還要感謝所有評(píng)委。這幾天,各位評(píng)委確實(shí)非常辛苦,有的老師還帶病堅(jiān)持工作。你們的敬業(yè)精神令我感動(dòng)!
經(jīng)甲乙雙方友好協(xié)商,由乙方承攬甲方3臺(tái)搪瓷釜修理工作,雙方本著平等互利、真誠(chéng)合作原則,結(jié)合本工程具體情況,依據(jù)《中華人民共和國(guó)合同法》有關(guān)規(guī)定,簽訂本合同,具體條款如下:一、合同內(nèi)容1.1、乙方承接甲方3臺(tái)搪瓷釜修理工作。并按本合同規(guī)定的要求,經(jīng)驗(yàn)收合格后交付甲方。1.2、項(xiàng)目?jī)?nèi)容見(jiàn)技術(shù)協(xié)議書(shū)。1.3、項(xiàng)目施工地點(diǎn):山東魯新化工有限公司1.4、交貨期:合同簽訂后乙方開(kāi)始準(zhǔn)備工作,乙方須在規(guī)定工作日內(nèi)安裝、調(diào)試完畢,并交付甲方使用。 二、合同價(jià)格合同總價(jià)為人民幣(大寫(xiě))金額為:壹萬(wàn)元整,¥10000元,在雙方未簽訂新的協(xié)議之前,任何一方不得修改此費(fèi)用。三、結(jié)算方式 設(shè)備維修、維護(hù)完畢,甲方檢定并驗(yàn)收后,乙方出具全額增值稅發(fā)票,甲方在收到發(fā)票后一個(gè)周內(nèi)支付給乙方合同總價(jià)的100%,人民幣(大寫(xiě))壹萬(wàn)元整,¥10000元。四、技術(shù)要求和技術(shù)標(biāo)準(zhǔn)4.1、詳見(jiàn)雙方技術(shù)協(xié)議書(shū)(合同附件)。4.2、要求設(shè)備維修、維護(hù)完畢后質(zhì)量穩(wěn)定可靠,操作方便。性能、精度應(yīng)完全符合技術(shù)協(xié)議中的技術(shù)質(zhì)量標(biāo)準(zhǔn)和相關(guān)行業(yè)標(biāo)準(zhǔn)。五、甲方承擔(dān)的義務(wù)和責(zé)任向乙方提供設(shè)備改造所必須的技術(shù)資料。甲方負(fù)責(zé)管道的蒸、吹、洗等管線的置換,以及物料管線內(nèi)的物料退返、隔離工作。以防拆除過(guò)程中生產(chǎn)物料的跑、冒、滴、漏的發(fā)生,或可能因物料的跑、冒、滴、漏的發(fā)生造成危險(xiǎn)。有必要提供維修時(shí)的環(huán)境因素。
一、教材分析第四單元“發(fā)展社會(huì)主義市場(chǎng)經(jīng)濟(jì)”旨在培養(yǎng)社會(huì)主義的建設(shè)者,高中生是未來(lái)社會(huì)主義現(xiàn)代化建設(shè)的主力軍,是將來(lái)參與市場(chǎng)經(jīng)濟(jì)活動(dòng)的主要角色,承擔(dān)著全面建設(shè)小康社會(huì)的重任,本課的邏輯分為兩目:第一目,從“總體小康到全面小康”。這一部分的邏輯結(jié)構(gòu)如下:首先謳歌我國(guó)人民的生活水平達(dá)到總體小康這一偉大成就,然后從微觀和宏觀兩個(gè)方面介紹總體小康的成就。同時(shí)指出,我國(guó)現(xiàn)在達(dá)到的小康是低水平、不全面、發(fā)展不平衡的小康。第二目“經(jīng)濟(jì)建設(shè)的新要求”。這一目專(zhuān)門(mén)介紹全面建設(shè)小康社會(huì)的經(jīng)濟(jì)目標(biāo),也是學(xué)生要重點(diǎn)把握的內(nèi)容。二、教學(xué)目標(biāo)(一)知識(shí)目標(biāo)(1)識(shí)記總體小康的建設(shè)成就在宏觀和微觀上的表現(xiàn),全面建設(shè)小康社會(huì)的經(jīng)濟(jì)建設(shè)目標(biāo)。(2)理解低水平、不全面、發(fā)展很不平衡的小康,以及小康社會(huì)建設(shè)進(jìn)程是不平衡的發(fā)展過(guò)程。(3)運(yùn)用所學(xué)知識(shí),初步分析全面建設(shè)小康社會(huì)的意義。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過(guò)程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過(guò)正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類(lèi)比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡(jiǎn)、求值等三角問(wèn)題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡(jiǎn)、求值、證明問(wèn)題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡(jiǎn)、證明等問(wèn)題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問(wèn)題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
新知講授(一)——隨機(jī)試驗(yàn) 我們把對(duì)隨機(jī)現(xiàn)象的實(shí)現(xiàn)和對(duì)它的觀察稱為隨機(jī)試驗(yàn),簡(jiǎn)稱試驗(yàn),常用字母E表示。我們通常研究以下特點(diǎn)的隨機(jī)試驗(yàn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);(3)每次試驗(yàn)總是恰好出現(xiàn)這些可能結(jié)果中的一個(gè),但事先不確定出現(xiàn)哪個(gè)結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎(jiǎng)時(shí),將10個(gè)質(zhì)地和大小完全相同、分別標(biāo)號(hào)0,1,2,...,9的球放入搖獎(jiǎng)器中,經(jīng)過(guò)充分?jǐn)嚢韬髶u出一個(gè)球,觀察這個(gè)球的號(hào)碼。這個(gè)隨機(jī)試驗(yàn)共有多少個(gè)可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號(hào)碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號(hào)碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機(jī)試驗(yàn)E的每個(gè)可能的基本結(jié)果稱為樣本點(diǎn),全體樣本點(diǎn)的集合稱為試驗(yàn)E的樣本空間。
問(wèn)題導(dǎo)學(xué)類(lèi)比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫(huà)出雙曲線的草圖
問(wèn)題導(dǎo)學(xué)類(lèi)比用方程研究橢圓雙曲線幾何性質(zhì)的過(guò)程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開(kāi)口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說(shuō)明拋物線向右上方和右下方無(wú)限延伸.拋物線是無(wú)界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫(xiě)出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問(wèn)題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問(wèn)題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
當(dāng)A,C顏色相同時(shí),先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時(shí),先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會(huì)鋼琴和小號(hào)中的一種樂(lè)器,其中7人會(huì)鋼琴,3人會(huì)小號(hào),從中選出會(huì)鋼琴與會(huì)小號(hào)的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會(huì)鋼琴又會(huì)小號(hào)(把該人記為甲),只會(huì)鋼琴的有6人,只會(huì)小號(hào)的有2人.把從中選出會(huì)鋼琴與會(huì)小號(hào)各1人的方法分為兩類(lèi).第1類(lèi),甲入選,另1人只需從其他8人中任選1人,故這類(lèi)選法共8種;第2類(lèi),甲不入選,則會(huì)鋼琴的只能從6個(gè)只會(huì)鋼琴的人中選出,有6種不同的選法,會(huì)小號(hào)的也只能從只會(huì)小號(hào)的2人中選出,有2種不同的選法,所以這類(lèi)選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.
一、情境導(dǎo)學(xué)我國(guó)著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問(wèn)題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過(guò)數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問(wèn)題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門(mén)位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來(lái)表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說(shuō)法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.