本來比較速度變化的快慢也有兩種方法:一種是比較相同時間內(nèi)速度變化量的大小;另一種是比較發(fā)生相同的速度變化所需要的時間長短。但教材是將比較質(zhì)點位置移動快慢的思想直接遷移過來,通過實例分析,使學(xué)生明白不同運動物體的速度變化快慢不同,表現(xiàn)在速度的變化與發(fā)生這個變化所用時間的比值不同,從而引入加速度的定義方法a=△v/△t。加速度表示速度的變化快慢,包括速度增加的快慢和減小的快慢,不能誤認(rèn)為只要有加速度的運動速度就一定是增加的。廣義地講,加速度不僅可以描述速度大小的變化快慢,而且也可以描述速度方向變化的快慢,本節(jié)教材只限定在直線運動的情景中討論。加速度的矢量性是一個難點,教材是以與速度方向相同或是相反來表述加速度的矢量性的。如果以初速度方向為正方向,那么加速度就有正負(fù)之分,加速度的正負(fù)表示加速度的方向,不表示加速度的大小。
(三)合作交流能力提升教師:剛才我們通過實驗了解了小車的速度是怎樣隨時間變化的,但實驗中有一定的誤差,請同學(xué)們討論并說出可能存在哪些誤差,造成誤差的原因是什么?(每個實驗小組的同學(xué)之間進行熱烈的討論)學(xué)生:測量出現(xiàn)誤差。因為點間距離太小,測量長度時容易產(chǎn)生誤差。教師:如何減小這個誤差呢?學(xué)生:如果測量較長的距離,誤差應(yīng)該小一些。教師:應(yīng)該采取什么辦法?學(xué)生:應(yīng)該取幾個點之間的距離作為一個測量長度。教師:好,這就是常用的取“計數(shù)點”的方法。我們應(yīng)該在紙帶上每隔幾個計時點取作一個計數(shù)點,進行編號。分別標(biāo)為:0、1、2、3……,測各計數(shù)點到“0”的距離。以減小測量誤差。教師:還有補充嗎?學(xué)生1:我在坐標(biāo)系中描點畫的圖象只集中在坐標(biāo)原定附近,兩條圖象沒有明顯的分開。學(xué)生2:描出的幾個點不嚴(yán)格的分布在一條直線上,還能畫直線嗎?
(二)說學(xué)法指導(dǎo)把“學(xué)習(xí)的主動權(quán)還給學(xué)生”,倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式,因而,我在教學(xué)過程中特別重視創(chuàng)造學(xué)生自主參與,合作交流的機會,充分利用學(xué)生已獲得的生活體驗,通過相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學(xué)生主動參與,積極思考,分析現(xiàn)象背后的哲學(xué)理論依據(jù),幫助學(xué)生樹立批判精神和創(chuàng)新意識,從而增強教學(xué)效果,讓學(xué)生在自己思維的活躍中領(lǐng)會本節(jié)課的重點難點。(三)說教學(xué)手段:我運用多媒體輔助教學(xué),展示富有感染力的各種現(xiàn)象和場景,營造一個形象生動的課堂氣氛。三、說教學(xué)過程教學(xué)過程堅持"情境探究法",分為"導(dǎo)入新課——推進新課——走進生活"三個層次,環(huán)環(huán)相扣,逐步推進,幫助學(xué)生完成由感性認(rèn)識到理性認(rèn)識的飛躍。下面我重點簡述一下對教學(xué)過程的設(shè)計。
一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識》的重點和核心之一。學(xué)好這部分的知識對于學(xué)生進一步理解辯證法的思維方法,樹立創(chuàng)新意識起著重要的作用。(二)說教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識的關(guān)系,分析辯證否定的實質(zhì)是"揚棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識息息相關(guān)。
知識和技能 ⑴從圖片和簡易圖中,了解氣團(冷氣團、暖氣團)的概念;鋒的概念與分類;低壓(氣旋)、高壓(反氣旋)、高壓脊、低壓槽的概念。⑵從氣溫、氣壓、濕度、降水、風(fēng)等幾方面分析各種天氣系統(tǒng)的形成及其氣流特點,并綜合出各種天氣系統(tǒng)控制下的天氣狀況過程與方法 ⑴讓學(xué)生能閱讀和簡單分析天氣圖,解釋天氣變化現(xiàn)象;⑵用案例說明氣象災(zāi)害發(fā)生的原因和危害;⑶結(jié)合我國常見的天氣系統(tǒng)說明其對人們生產(chǎn)和生活的影響情感、態(tài)度與價值觀激發(fā)學(xué)生探究天氣的形成和變化的興趣和動機,培養(yǎng)學(xué)生求真、求實的科學(xué)態(tài)度,提高地理審美情趣教學(xué)重點1.鋒面系統(tǒng)。(鋒面系統(tǒng):一是要區(qū)別冷暖鋒的成因,二是要掌握鋒面兩側(cè)的氣壓、溫度、濕度、風(fēng)和天氣差異)2.低壓、高壓系統(tǒng)。(要掌握其成因、氣壓特征、氣流特征及其天氣特點四個方面。)
The price is the same as(the price was)before the war.價格與戰(zhàn)前相同。(4)定語從句中的“關(guān)系代詞+助動詞be”可以省略。The ticket(that/which was)booked by his sister has been sent to him.他妹妹訂的那張票已送到了他那里。Step 5 PracticeActivity 3(1) Guide students to complete the four activities in the Using Structures part of exercise book, in which activities 1 and 2 focus on ellipsis in dialogue answers, activity 3 focus on signs and headlines, two typical situations where ellipsis is used, and activity 4 focus on ellipsis in diary, an informal style.(2) Combine the examples in the above activities, ask students to summarize the omitted situations in groups, and make their own summary into a poster, and post it on the class wall after class to share with the class.(This step should give full play to the subjectivity of students, and teachers should encourage students to conclude different ellipsis phenomena according to their own understanding, they can conclude according to the different parts omitted in the sentence.)Step 6 Homework1. Understand and master the usages of ellipsis;2. Finish the other exercises in Using structures of Workbook.1、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生是否理解和掌握省略的用法;2、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生能否根據(jù)上下文語境或情景恢復(fù)句子中省略的成分,體會使用省略的效果;3、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生能否獨立完成練習(xí)冊和導(dǎo)學(xué)案中的相關(guān)練習(xí)。
*wide range of origins(= a great number of different origins, many kinds of origins)*It featured a parade and a great feast with music, dancing, and sports. (=A parade and a great feast with music, dancing, and sports were included as important parts of the Egyptian harvest festival.)*.. some traditions may fade away and others may be established.(= Some traditions may disappear gradually, while other new traditions may come into being.)Step 6 Practice(1) Listen and follow the tape.The teacher may remind the students to pay attention to the meaning and usage of the black words in the context, so as to prepare for the completion of the blanks in activity 5 and vocabulary exercises in the exercise book.(2) Students complete the text of activity 5 by themselves.The teacher needs to remind the students to fill in the blanks with the correct form of the vocabulary they have learned in the text.Students exchange their answers with their partners, and then teachers and students check their answers.(3)Finish the Ex in Activity 5 of students’ book.Step 7 Homework1. Read the text again, in-depth understanding of the text;2. Discuss the origin of festivals, the historical changes of related customs, the influence of commercial society on festivals and the connotation and essential meaning of festivals.3. Complete relevant exercises in the guide plan.1、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生是否理解和掌握閱讀文本中的新詞匯的意義與用法;2、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生能否結(jié)合文本特點快速而準(zhǔn)確地找到主題句;3、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生能否理清論說文的語篇結(jié)構(gòu)和文本邏輯,了解節(jié)日風(fēng)俗發(fā)展與變遷,感悟節(jié)日的內(nèi)涵與意義。
The joke set her crying.這個玩笑使她哭起來。Step 5 ReadingActivity 31. Students read the small text in activity 3. The teacher provides several small questions to check whether students understand the content of the text and the ideographic function of the -ing form in the text.*Where are those people?*Why did Dr Bethune come to China?*How did he help the Chinese people during the war?*What did Chairman Mao Zedong say about him?2. Ss try to rewrite some sentences using the -ing form. Then check the answers. When checking the answers, the teacher can ask different students to read the rewritten sentences and give comments.Answers:1. he became very interested in medicine, deciding to become a doctor.2. …after hearing that many people were dying in the war.3. Helping to organise hospitals, he taught doctors and nurses, and showed people how to give first aid./ He helped to organise hospitals, teaching doctors and nurses, and showing people how to give first aid.4. …praising Dr Bethune as a hero to be remembered in China.Step 6 PracticeActivity 4Students complete grammar activities 2 and 3 on page 69 of the workbook.Step 6 Homework1. Understand and master the functions and usage of the -ing form;2. Finish the other exercises in Using structures.1、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生是否理解和掌握動詞-ing形式作賓語補足語語和狀語語的功能和意義;2、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生能否正確使用動詞-ing形式描述人物的行為、動作及其經(jīng)歷;3、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生能否獨立完成練習(xí)冊和導(dǎo)學(xué)案中的相關(guān)練習(xí)。
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
4.已知△ABC三個頂點坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
1.直線2x+y+8=0和直線x+y-1=0的交點坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
實驗?zāi)繕?biāo):1、知道打點計時器的構(gòu)造和原理,學(xué)會使用打點計時器,能根據(jù)打出的紙帶計算打幾個點所用的時間,會計算紙帶的平均速度,能根據(jù)紙帶粗略測量紙帶的瞬時速度,認(rèn)識v-t圖象,并能根據(jù)v-t圖象判斷物體的運動情況。2、通過速度測量過程的體驗,領(lǐng)悟兩個方法:一是用圖象處理物理數(shù)據(jù)的方法;二是極限法或說無限趨近法,加強一個認(rèn)識,實驗是檢驗理論的標(biāo)準(zhǔn)。實驗器材:電源(220v電源或?qū)W生電源),打點計時器,紙帶,刻度尺(最好是塑料透明的),導(dǎo)線實驗準(zhǔn)備:1、仔細(xì)觀察電磁打點計時器和電火花計時器,對照課本,比較它們的異同。2、兩類打點計時器的打點時間間隔是多少?3、分析紙帶時,如何計算紙帶的平均速度。4、嚴(yán)格地說,瞬時速度我們引進測量出來的,你知道用什么方法求出的速度可以代替某點的瞬時速度嗎?
實驗?zāi)繕?biāo):1、知道打點計時器的構(gòu)造和原理,學(xué)會使用打點計時器,能根據(jù)打出的紙帶計算打幾個點所用的時間,會計算紙帶的平均速度,能根據(jù)紙帶粗略測量紙帶的瞬時速度,認(rèn)識v-t圖象,并能根據(jù)v-t圖象判斷物體的運動情況。2、通過速度測量過程的體驗,領(lǐng)悟兩個方法:一是用圖象處理物理數(shù)據(jù)的方法;二是極限法或說無限趨近法,加強一個認(rèn)識,實驗是檢驗理論的標(biāo)準(zhǔn)。實驗器材:電源(220v電源或?qū)W生電源),打點計時器,紙帶,刻度尺(最好是塑料透明的),導(dǎo)線實驗準(zhǔn)備:1、仔細(xì)觀察電磁打點計時器和電火花計時器,對照課本,比較它們的異同。2、兩類打點計時器的打點時間間隔是多少?3、分析紙帶時,如何計算紙帶的平均速度。4、嚴(yán)格地說,瞬時速度我們引進測量出來的,你知道用什么方法求出的速度可以代替某點的瞬時速度嗎?5、從器材上讀取的數(shù)據(jù)是原始數(shù)據(jù),原始數(shù)據(jù)是寶貴的實驗資料,要嚴(yán)肅對待,要整齊的記錄,妥善保存。
(一)知識與技能1.理解重力勢能的概念,會用重力勢能的定義進行計算。2.理解重力勢能的變化和重力做功的關(guān)系,知道重力做功與路徑無關(guān)。3.知道重力勢能的相對性,知道重力勢能是物體和地球系統(tǒng)共有的(二)過程與方法:用所學(xué)功的概念推導(dǎo)重力做功與路徑的關(guān)系,親身感受知識的建立過程(三)情感、態(tài)度與價值觀1.滲透從對生活中有關(guān)物理現(xiàn)象的觀察,得到物理結(jié)論的方法,激發(fā)和培養(yǎng)學(xué)生探索自然規(guī)律的興趣.2.培養(yǎng)學(xué)生遵守社會公德,防止高空墜物?!窘虒W(xué)重點】重力勢能的概念及重力做功跟物體重力勢能改變的關(guān)系?!窘虒W(xué)難點】重力勢能的系統(tǒng)性和相對性。【教學(xué)方法】啟發(fā)、引導(dǎo)、講練結(jié)合【教學(xué)過程】一、新課引入有句話是“搬起石頭砸自己的腳”,從物理的角度看待這一問題,搬起的石頭有了做功的本領(lǐng),它就具有了能,這種能我們稱為重力勢能。我們今天就來學(xué)習(xí)重力勢能。二、新課教學(xué)
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。